mixedmath

Explorations in math and programming
David Lowry-Duda



On Thursday, 18 March, I gave a talk on half-integral weight Dirichlet series at the Ole Miss number theory seminar.

This talk is a description of ongoing explicit computational experimentation with Mehmet Kiral, Tom Hulse, and Li-Mei Lim on various aspects of half-integral weight modular forms and their Dirichlet series.

These Dirichlet series behave like typical beautiful automorphic L-functions in many ways, but are very different in other ways.

The first third of the talk is largely about the "typical" story. The general definitions are abstractions designed around the objects that number theorists have been playing with, and we also briefly touch on some of these examples to have an image in mind.

The second third is mostly about how half-integral weight Dirichlet series aren't quite as well-behaved as L-functions associated to GL(2) automorphic forms, but sufficiently well-behaved to be comprehendable. Unlike the case of a full-integral weight modular form, there isn't a canonical choice of "nice" forms to study, but we identify a particular set of forms with symmetric functional equations to study. There are several small details that can be considered here, and I largely ignore them for this talk. This is something that I hope to return to in the future.

In the final third of the talk, we examine the behavior and zeros of a handful of half-integral weight Dirichlet series. There are plots of zeros, including a plot of approximately the first 150k zeros of one particular form. These are also interesting, and I intend to investigate and describe these more on this site later.

The slides for this talk are available here.


Leave a comment

Info on how to comment

To make a comment, please send an email using the button below. Your email address won't be shared (unless you include it in the body of your comment). If you don't want your real name to be used next to your comment, please specify the name you would like to use. If you want your name to link to a particular url, include that as well.

bold, italics, and plain text are allowed in comments. A reasonable subset of markdown is supported, including lists, links, and fenced code blocks. In addition, math can be formatted using $(inline math)$ or $$(your display equation)$$.

Please use plaintext email when commenting. See Plaintext Email and Comments on this site for more. Note also that comments are expected to be open, considerate, and respectful.

Comment via email