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Riemann Zeta

The prototypical classical L-function is

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(
1− 1

ps

)−1

,

which converges (and is originally defined)

for Re s > 1, but which can be

meromorphically continued to C.

Riemann’s notes introducing ζ(s) around 1859

The completed zeta function

Λ(s) := π−
s
2 Γ
(
s
2

)
ζ(s)

satisfies a functional equation

Λ(s) = Λ(1− s).
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Riemann introduced ζ(s) to study questions about the distribution and

count of primes. To prove the Prime Number Theorem

(π(X ) ∼ X/ log X ), you consider a Mellin transform

1

2πi

∫ 2+i∞

2−i∞

ζ ′(s)

ζ(s)

X s

s
ds (1)

and apply tools and methods from complex analysis.

The connection with primes is apparent from the Euler product

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

Error terms in this proof of the Prime Number Theorem are related to

zeros of ζ(s), as can be seen from (1).
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These are the zeros (with 0 < Im s < 125) of ζ(s) in the critical strip.

The smallest zero has imaginary part 14.1347 . . .

The Riemann Hypothesis is that all (nontrivial) zeros of ζ(s) are on this

line.
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The Selberg Class of L-functions

More generally, we frequently study the Selberg Class of L-functions.

These are Dirichlet series

L(s) =
∑
n≥1

a(n)

ns

that satisfy

1. Analytic Continuation: L(s) has analytic continuation to C (with

the possible exception of a pole at s = 1).

2. Ramanujan Conjecture: The coefficients grow slowly, |a(n)| � nε

for any ε > 0.

3. Functional Equation: L(s) can be completed Λ(s) = L(s)QsG (s)

for a (real) number Q and a product of Gamma factors G (s), such

that Λ(s) = εΛ(1− s) for some |ε| = 1.

4. Euler Product: L(s) has an Euler product L(s) =
∏

p Lp(s) for

“nice” objects Lp(s).
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It turns out that to many objects of arithmetic interest, we can associate

an L-function that is (perhaps conjecturally) in the Selberg Class. And all

of these L-functions are conjectured to satisfy similar properties to the

ζ(s).

For example, a Generalized Riemann Hypothesis is conjectured for

Selberg Class L-functions: all (nontrivial) zeros of L(s) should be on the

line Re s = 1
2 .
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Modular L-functions

One source of L-functions are modular forms. A (weight k , holomorphic)

modular form is a holomorphic function f on the upper half-plane

H = {x + iy : (x , y) ∈ R2, y > 0}, which transforms in a prescribed way

under the action of a matrix group Γ ⊆ SL(2,Z):

f (γz) := f
(az + b

cz + d

)
= (cz + d)k f (z), γ =

(
a b
c d

)
∈ Γ ⊆ SL(2,Z).

Further, we require f (z) to be holomorphic on the compactified quotient

Γ\H, which translates to f having a Fourier expansion

f (z) =
∑
n≥0

a(n)e(nz) e(z) := e2πiz ,

(and a few other well-behaved Fourier expansions associated to other

cusps of Γ\H).
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If the Fourier expansions associated to f have zero constant coefficient

f (z) =
∑
n≥1

a(n)e(nz),

then f is called a holomorphic cuspform. Modular cuspforms of weight k

associated to Γ form a vector space, which we denote by Sk(Γ).

There is an infinite family of Hecke operators Tp, indexed by primes, that

act linearly on Sk(Γ). There is a basis of Sk(Γ) that consists of cuspforms

that are simultaneous eigenforms for all of the Hecke operators.

Normalized appropriately, the coefficient a(p) is the eigenvalue of f of

the Hecke operator Tp, and the action of the Hecke operators implies

that the coefficients are multiplicative.

To each normalized cuspidal modular Hecke eigenform f , we can

associate an L-function

L(s, f ) =
∑
n≥1

a(n)

ns+ k−1
2

.
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Example: Ramanujan’s modular form, ∆(z)

The Delta function

∆(q) = q
∏
n≥1

(1− qn)24 (q = e2πiz)

= q − 24q2 + 252q3 + · · ·

is a weight 12 modular form on

Γ = SL(2,Z). This modular form was

studied by Ramanujan. Its L-function is

L(s,∆) = 1− 24/2s+5.5 + 252/3s+5.5 + · · · ,
and attempts to show that these

coefficients are multiplicative led to the

development of Hecke operators. The

L-function satisfies the functional equation

∆(z), visualized on the disk model ofH. In this

representation, “six O’clock” is 0, the center is i ,

“noon” is i∞.

Color represents argument, consecutive contours

indicate doubled size.

Λ(s, f ) := (2π)−sΓ(s + 11
2 )L(s, f ) = Λ(1− s, f ).
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Example: Elliptic Curve Y 2 + Y = X 3 − X 2 − 10X − 20

Consider the Elliptic curve

Y 2 + Y = X 3 − X 2 − 10X − 20. Let

a(p) = (p + 1)−#E (Fp) count deviation

from the expected number of solutions on

the curve over Fp.

Then there is a weight 2 modular form on Γ(11) ⊂ SL(2,Z),

f (q) = q
∏
n≥1

(1− qn)2(1− q11n)2,

whose coefficients a(p) match exactly the a(p) defined above (an

example of the Modularity theorem), and the L-functions associated to

the curve and this modular form are the same:

L(s,E ) = 1− 2

2s+0.5
− 1

3s+0.5
+ · · · ,

satisfying

Λ(s,E ) := (22π)s/2Γ(s + 1/2)L(s,E ) = Λ(1− s,E ).
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Both of these examples give Selberg L-functions. The analyticity and

functional equation follow from the action of the matrix subgroup of

SL(2,Z) on the modular form. The Euler product comes from the theory

of Hecke operators. The Ramanujan conjecture |a(n)| � nε is the

Hasse-Weil Bound on elliptic curves (for L(s,E )) or the highly nontrivial

Deligne’s Bound [Del71] (for general modular L(s, f )).

First zeros of L(s, E) First zeros of L(s,∆)
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No Euler products

Of the four requirements of the Selberg Class (analyticity, Ramanujan

conjecture, a functional equation, and an Euler product), the most

surprising to me is the Euler product. The other requirements all feel very

“analytic”, but the Euler product is feels fundamentally “arithmetic”.

But it’s known that a (nice) Euler product is essential to results like RH.
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Davenport–Heilbronn series

For example, Davenport and Heilbronn [DH36] studied a Dirichlet series

formed from a particular linear combination of Dirichlet L-functions,

L(s) =
1− iθ

2
L(s, χ) +

1 + iθ

2
L(s, χ),

where θ is a particular constant and χ = χ5(2, ·) is the unique primitive

character mod 5 with χ(2) = i . Then L(s) satisfies the functional

equation

Λ(s) := L(s)Γ( s+1
2 )(5/π)s/2 = Λ(1− s),

but has infinitely many zeros on the critical line and infinitely many zeros

in the half-plane Re s > 1.

The exceptional zeros appear to be sporadic: there are four zeros off the

critical line with 0 < Im s < 200. Nonetheless, there are infinitely many.
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Motivation

More generally, we expect that any Dirichlet series that satisfies the first

three requirements of the Selberg class but not an Euler product should

fail to satisfy a Riemann Hypothesis.

Until 2018, the only sort of example of this

sort of not-quite-Selberg Dirichlet series and

analysis I’d seen were formed from linear

combinations of Selberg Class L-functions,

like the Davenport–Heilbronn series.

But there is a class of Dirichlet series coming from half-integral weight

modular forms, which (we think) aren’t linear combinations of Selberg

Class L-functions, and which don’t have a multiplicative structure.
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Half-integral weight modular forms

A modular form of half-integral weight k (so k here is in 1
2 + Z) is a

holomorphic function on H that transforms in a prescribed way under the

action of a discrete subgroup Γ ⊆ SL(2,Z), satisfying

f (γz) = j(γ, z)k f (z)

for a half-integral factor of automorphy j(γ, z). In the remainder of this

talk, I’ll consider the cocycle

j(γ, z) = ε−1
d

( c

d

)√
cz + d , εd =

{
1 d ≡ 1 mod 4,

i d ≡ 3 mod 4.

Here, (c/d) is the Legendre symbol, and we will suppose that

Γ ⊆ Γ0(4) = {
(
a b
c d

)
: b ≡ 0 mod 4}, so that we know that d is odd.

Notice if you square j(γ, z), it looks like a full-integral weight

transformation law (possibly with a quadratic twist).
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As with full-integer weight forms, we require that f be holomorphic at all

the cusps, which implies that f (z) can be written as a Fourier expansion

f (z) =
∑
n≥0

a(n)e(nz).

If a(0) = 0 in all such Fourier expansions, then f is a half-integer weight

cuspform.

There is a theory of Hecke operators, but it’s a very different theory in

comparison to the full-integer weight case. Hecke operators are indexed

by square of primes T (p2). The action of these Hecke operators does not

force the coefficients to be multiplicative. (They do relate the coefficients

a(np2) and a(n), but they do not relate coefficients at squarefree indices.

Weird!). It is still true that there is a basis of forms that are eigenforms

under (almost all) Hecke operators.
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Shimura Correpondence

However, if f =
∑

n≥1 a(n)e(nz) is a half-integral weight k > 1 cuspform

that is an eigenform of each Hecke operator T (p2), and if we denote the

eigenvalues by T (p2)f = α(p)f , then we can define a sequence of

coefficients b(n) by

∑
n≥1

b(n)

ns
=
∏
p

(
1− α(p)

ps
+

p2k−1

p2s

)−1

,

then

F (z) =
∑
n≥1

b(n)e(nz)

is a full-integral weight (2k − 1) Hecke eigenform.

This is the Shimura Correspondence [Shi73]. Thus half-integral weight

Hecke cuspforms don’t have multiplicative coefficients or Euler products,

but they correspond to full-integer weight cuspforms in the Selberg class.
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The theta function

One example of a half-integral weight modular form is the theta function

θ(z) = 1 + 2
∑
n≥1

e2πin2z ,

which is a weight 1/2 modular form on Γ0(4). This is a very natural

object in the theory of Dirichlet series, as Riemann’s first proof of the

functional equation for ζ(s) uses this theta function in the form

Θ(y) := θ(iy/
√

2).

Riemann showed that

π−s/2Γ( s
2 )ζ(s) =

∫ ∞
0

1
2 (Θ(t)− 1)ts/2 dt

t

and derived the functional equation for ζ(s) from transformation laws for

θ(z) (via Poisson summation). (A similar story is true for Dirichlet

L-functions and twisted theta functions θχ).
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Dirichlet series

Half-integral weight cusp forms of weight k on a matrix group Γ form a

complex vector space Sk(Γ). To any such cuspform

f (z) =
∑

n≥1 a(n)e(nz), one can associate a Dirichlet series

L(s, f ) =
∑
n≥1

a(n)

ns+ k−1
2

,

but these Dirichlet series won’t have Euler products, even if f is a Hecke

eigenform.

Each such Dirichlet series have analytic continuation to C and satisfy a

functional equation of the form

QsL(s, f )G (s) = εQ1−sL(1− s, g)G (1− s),

where g is a modular form related to f via an involution of the form

g(z) ≈ f (1/Nz). But in general (in contrast to the full-integral case), g

is not a cusp form in the same space Sk(Γ) — in general g can transform

with a quadratically twisted factor of automorphy χN(γ)j(γ, z)k .
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A priori, there are thus two differences between Dirichlet series coming

from half-integral weight modular forms and the Selberg class: a typical

half-integral weight modular form doesn’t yield a symmetric functional

equation, and the Dirichlet series won’t have an Euler product.

However, for Hecke eigenforms on Γ0(4N), for N squarefree, it is possible

to choose a related form with a symmetric functional equation.

Proposition (Hulse–Kıral–Lim–Lowry-Duda)

Let f (z) be a Hecke eigenform of half-integral weight k on Γ0(4N) with

(full-integer) weight 2k − 1 Shimura correspondent F . Then there is

Hecke eigenform g of weight k on Γ0(16N2) that also has Shimura

correspondent F and whose Dirichlet series satisfies the symmetrical

functional equation

Λ(s, g) = QsL(s, g)G (s) = εΛ(1− s, g)

for some |ε| = 1.

(Aside: Frequently one can take g to be on Γ0(4N2)).
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For the remainder of this talk, we consider only those half-integral weight

k cuspidal Hecke eigenforms g that appear in the Proposition. Each such

form has a Dirichlet series L(s, g) =
∑

n≥1 A(n)n−s that has analytic

continuation to C and a symmetric functional equation (Selberg class

requirements 1 and 3).

Further, it is known [CN62] that∑
n≤X

|A(n)|2 = cgX ,

so that the Ramanujan Conjecture A(n)� nε is true on average.

(Heuristically it seems true).
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What classical results are still true?

Such a Dirichlet series L(s, g) is very similar to a Selberg Class

L-function like ζ(s), and thus all proofs that work for the Selberg Class

but that completely avoid the Euler product will apply. Not everything

works: For example, to study ζ ′(s)/ζ(s) (as in the Prime number

theorem), one method is to logarithmically differentiate the Euler product

representation to get a well-behaved function in the region Re s > 1 —

but we can’t do that here!

Nonetheless, one can prove the expected counting results.

Theorem

� L(s, g) has on the order of T log T nontrivial zeros with

0 < Im s < T .

� L(s, g) has at most log T zeros (counting multiplicity) in any strip

T < Im s < T + 1.
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We can prove a few results that might look a bit odd in comparison with

the Selberg Class, too.

Theorem

� All nontrivial zeros of L(s, g) are constrained to a strip

1− A < Re s < A. (But typically A > 1).

� If L(s, g) has at least one zero in the region Re s > 1, then L(s, g)

has infinitely many, and there are Ω(T ) in the region 0 < Im s < T .

This last result follows from the general theory of almost periodic

functions, but is somewhat uncommon now since Selberg Class

L-functions don’t have zeros in the domain of absolute convergence.
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These are zeros of the unique half-integral weight modular form g of

weight 9/2 on Γ0(4) (a form appearing in Shimura’s paper [Shi73]). If

η(z) = e(z/24)
∏

n≥1(1− e(nz)) is the Dedekind η function (a 24th root

of ∆(z)), then this form is g(z) = η(2z)12θ(z)−3.
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Yoshida [Yos95] computed the first couple dozen of these zeros in 1995.
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About 70 percent of the zeros in this image are on the critical line.
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In order to compute with half-integral weight Dirichlet series, it is first

necessary to compute the Fourier coefficients of the desired forms.

We use Magma to compute the Fourier expansions for a basis of forms for

a vector space Sk(Γ). (Magma uses an implementation of an algorithm

from a Basmaji’s PhD thesis [Bas96], which multiplies several full-integer

weight forms by a variety of theta functions).

We then diagonalize this space with respect to the Hecke operators in

sagemath to get a basis of Hecke eigenforms.

For a desired form, we symmetrize it as in our Proposition noted above.

This was enough to compute the first hundred thousand Fourier

coefficients of the weight 9/2 form on Γ0(4).
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With the Fourier coefficients, we compute values of L(s, g) using the

approximate functional equation. For the weight 9/2 form, this looks like

Λ(s, g) = π−s
∑
n≥1

a(n)

ns
V1(n, s) + πs−1

∑
n≥1

a(n)

n1−s V2(n, 1− s)

where V1 and V2 are rapidly decaying Mellin transforms of Gamma

functions.

In practice, we used a C++ implementation for symmetric degree 2

L-functions written by Rubinstein, called lcalc, and checked against the

heuristic evaluation techniques of Yoshida [Yos95]. (A patched version of

lcalc is included in sagemath).
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To find the zeros themselves, we use a triple of techniques.

1. Zeros on the critical line

2. Quick heuristic methods for zeros off the critical line

3. Verification and checking for zeros off the critical line
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Zeros on the critical line

If ε2
1ε = 1 (where ε here is the sign of the functional equation), then

ε1Λ(s, g) is real-valued on the critical line. (In practice, we’ve only

examined forms where ε = ±1, so that Λ(s, g) is either totally real or

totally imaginary on the critical line).

Finding zeros on the critical line can be done pretty quickly by computing

Λ(s, g) at several points and looking for sign changes. These zeros are

the easiest to compute.
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Heuristic method for zeros off the critical line

To find zeros off the critical line, we’ve turned towards using Newton’s

Method of root finding (which works very well when it works, as L(s, g)

is complex analytic and all roots seem to be single roots).

That is, we compute several iterations of the map

sn = sn−1 −
L(sn−1, g)

L′(sn−1, g)

on a mesh of points. We ignore iterations that diverge and collect the

various remaining candidate zeros for later verification.

Even though this is heuristic and in practice we re-find the same roots

several times, this is our fastest technique in heuristic zero generation so

far.
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Numerical contour integration and the argument principle

To verify counts and locations of zeros, we numerically compute integrals

1

2πi

∫
C

L′(z , g)

L(z , g)
dz

over contours C around heuristic zeros. By the argument principle, this

integral gives the number of zeros (with multiplicity) inside the contour.

In comparison to Newton’s method, this numerical integration is

computationally intensive and slow. We’re still working out the optimal

way to heuristic and verifiable computation. But we believe we’ve found

at least 99 percent of the first 150000 zeros for the weight 9/2 form

indicated earlier.

We’ve done this with other half-integral weight modular forms as well.
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A weight 9/2 form on Γ0(12).
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There don’t seem to be any zeros outsize of the critical strip.
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Approximately 65 percent of these zeros are on the critical line.
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We can investigate statistics concerning the zeros as well. One nontrivial

statistic is the pair correlation. For Selberg L-functions, the pair

correlation is defined in terms of the spacing between the nontrivial zeros,

weighted so that the expected spacing is 1 on average. Here, as we have

lots of “exceptional” zeros, it’s not clear what the right analogue is.

We investigated the pair correlation between the imaginary parts of zeros,

normalized so that the typical spacing is 1 on average. That is, if

ρn = σn + iγn is the nth zero, then we consider spacings

δn = c(γn+1 − γn) log c ′γn,

where c and c ′ come from the zero count N(T ) of zeros up to height T .

Then the pair correlation function is the distribution φ(u) such that as

M,N →∞,

1

M

{
(n, k) : N ≤ n ≤ N+M, k ≥ 0, δn+· · ·+δn+k ∈ [α, β]

}
∼
∫ β

α

φ(t)dt,

(if this function exists).
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The Montgomery Pair Correlation

Conjecture posits that the pair

correlation function for ζ(s) is

1−
( sin(πx)

πx

)2
.

Computationally, the pair correlation

function for the (normalized

differences between imaginary parts

of the) zeros of the weight 9/2 form

on Γ0(4) look like the figure at right.

Qualitatively, these look similar. There is a similar repulsion phenomenon

initially, and the shape is roughly similar. But they’re also clearly not the

same.
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Let’s examine estimated pair correlation functions for other forms.

75k zeros of a weight 13/2 form on Γ0(4)

70k zeros of a weight 15/2 form on Γ0(4)

40k zeros of a weight 9/2 form on Γ0(12)

10k zeros of another weight 9/2 form on Γ0(12)
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All five computed pair correlation approximations, plotted together.

Notice how structurally similar they are, despite coming from different

modular forms and over different ranges of zeros.

We don’t know how to explain this.
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We don’t quite know where we’re going, but what started as a purely

exploratory investigation into a niche between linear combinations of

L-functions and the Selberg class has transformed into an interesting

little chestnut.

To end, I’ll put (color coded) histograms of the real parts of the zeros

we’ve computed for these five forms.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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On the distribution of eigenvalues of maass forms on certain

moonshine groups.

Mathematics of Computation, 83(290):3039–3070, 2014.

G. Shimura.

On modular forms of half integral weight.

Annals of Mathematics, 97(3):440–481, 1973.



References iii

Hiroyuki Yoshida.

On calculations of zeros of various l-functions.

Journal of Mathematics of Kyoto University, 35(4):663–696, 1995.


	Typical L-functions
	Half-integral weight modular forms
	Computational Results and Methodology
	Pair Correlation
	Appendix

