Tag Archives: linear algebra

A response to FtYoU’s question on Reddit

FtYou writes

Hello everyone ! There is a concept I have a hard time getting my head wrap around. If you have a Vector Space V and a subspace W, I understand that you can find the least square vector approximation from any vector in V to a vector in W. And this correspond to the projection of V to the subspace W. Now , for data fitting … Let’s suppose you have a bunch of points (xi, yi) where you want to fit a set a regressors so you can approximate yi by a linear combination of the regressors lets say ( 1, x, x2 … ). What Vector space are we talking about ? If we consider the Vector space of function R -> R, in what subspace are we trying to map these vectors ?

I have a hard time merging these two concepts of projecting to a vector space and fitting the data. In the latter case what vector are we using ? The functions ? If so I understand the choice of regressors ( which constitute a basis for the vector space ) But what’s the role of the (xi,yi) ?

I want to point out that I understand completely how to build the matrices to get Y = AX and solving using least square approx. What I miss is the big picture. The linear algebra picture. Thanks for any help !

We’ll go over this by closely examining and understanding an example. Suppose we have the data points ${(x_i, y_i)}$

$\displaystyle \begin{cases} (x_1, y_1) = (-1,8) \\ (x_2, y_2) = (0,8) \\ (x_3, y_3) = (1,4) \\ (x_4, y_4) = (2,16) \end{cases},$

and we have decided to try to find the best fitting quadratic function. What do we mean by best-fitting? We mean that we want the one that approximates these data points the best. What exactly does that mean? We’ll see that before the end of this note – but in linear algebra terms, we are projecting on to some sort of vector space – we claim that projection is the ”best-fit” possible.

Posted in Expository, Mathematics | | 1 Comment