A short excursion -

The well-known Euler's Polynomial $x^2 - x + 41$ generates 40 primes at
the first 40 natural numbers. It is sometimes called a *prime-rich
polynomial*. There are many such polynomials, and although Euler's
Polynomial is perhaps the best-known, it is not the best. The best that I have
heard of is $(x^5 - 133 c^4 + 6729 x^3 - 158379 x^2 + 1720294x -
6823316)/4$, which generates 57 primes. But this morning, I was reading an
article on Ulam's Spiral when I heard of the opposite - a prime-poor
polynomial. The polynomial $x^{12} + 488669$ doesn't produce a prime
until $x = 616980$. Who knew?

And to give them credit, that prime-rich polynomial was first discovered by Jaroslaw Wroblewski & Jean-Charles Meyrignac in one of Al Zimmerman's Programming Contests (before being found by a few other teams too).

### Leave a comment

## Info on how to comment

To make a comment, please send an email using the button below. Your email
address **won't be shared** (unless you include it in the body
of your comment). If you don't want your real name to be used next to your
comment, please specify the name you would like to use. If you want your name
to link to a particular url, include that as well.

**bold**, *italics*, and plain text are allowed in
comments. A reasonable subset of markdown is supported, including lists,
links, and fenced code blocks. In addition, math can be formatted using
`$(inline math)$`

or `$$(your display equation)$$`

.

**Please use plaintext email** when commenting. See
Plaintext Email and
Comments on this site for more. Note also that
**comments are expected to be open, considerate, and
respectful.**

Comments (1)2021-12-25 Vaskor BasakWhat polynomials are allowable for prime-poor polynomials? Could I claim that I have found a better example of a prime-poor polynomial than $x^{12}+488669$ by presenting the example $(x+3)^{12}-488601$, for example?