Category Archives: Art

Slides from a talk at Bridges 2021

I gave a talk on visualizations of modular forms made with Adam Sakareassen at Bridges 2021. This talk goes with our short article. In this talk, I describe the line of ideas going towards producing three dimensional visualizations of modular forms, which I like to call modular terrains. When we first wrote that talk, we were working towards the following video visualization.

We are now working in a few different directions, involving informational visualizations of different forms and different types of forms, as well as purely artistic visualizations.

The slides for this talk can be found here.

I’ve recently been very fond of including renderings based on a picture of my wife and I in Iceland (from the beforetimes). This is us as a wallpaper (preserving many of the symmetries) for a particular modular form.

I reused a few images from Painted Modular Terrains, which I made a few months ago.

If you’re interested, you might also like a few previous talks and papers of mine:

Posted in Art, Expository, Mathematics | Leave a comment

Trace form 3.32.a.a

When asked if I might contribute an image for MSRI program 332, I thought it would be fun to investigate a modular form with a label roughly formed from the program number, 332. We investigate the trace form 3.32.a.a.

The space of weight $32$ modular forms on $\Gamma_0(3)$ with trivial central character is an $11$-dimensional vector space. The subspace of newforms is a $5$-dimensional vector space.

These newforms break down into two groups: the two embeddings of an abstract newform whose coefficients lie in a quadratic field, and the three embeddings of an abstract newform whose coefficients lie in a cubic field. The label 3.32.a.a is a label for the two newforms with coefficients in a quadratic field.

These images are for the trace form, made by summing the two conjugate newforms in 3.32.a.a. This trace form is a newform of weight $32$ on $\Gamma_1(3)$.

Each modular form is naturally defined on the upper half-plane. In these images, the upper half-plane has been mapped to the unit disk. This mapping is uniquely specified by the following pieces of information: the real line $y = 0$ in the plane is mapped to the boundary of the disk, and the three points $(0, i, \infty)$ map to the (bottom, center, top) of the disk.

This is a relatively high weight modular form, meaning that magnitudes can change very quickly. In the contoured image, each contour indicates a multiplicative change in elevation: points on one contour are $32$ times larger or smaller than points on adjacent contours.

I have a bit more about this and related visualizations on my visualization site.

Posted in Art, Mathematics | Tagged , | Leave a comment

The current cover art for the Proceedings of the Royal Society

The current issue of the Proceedings of the Royal Society A1 features cover artwork made by Vikas Krishnamurthy, Miles Wheeler, Darren Crowdy, Adrian Constantin, and me.

Cover of Proceedings of the Royal Society AA version of the cover pre-addition is the following.

This is based on the work in A transformation between stationary point vortex equilibria, which concerns solutions to Euler’s equation for inviscid (2D) fluid motion $$ \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = – \frac{\nabla p}{p_0}, $$ where $\nabla = (\partial/\partial x, \partial / \partial y)$ is the 2D gradient operator. There is a notion of vortices for these systems, and the paper examines configurations of point vortices under certain idealized conditions that leads to particularly nice analysis. In the situation studied, one can sometimes begin with one configurations of point vortices and perform a transformation that yields another, bigger and more complicated configuration.

This is the situation depicted on the cover — begin with a simple configuration and iterate the process. The spiral shape was added afterwards and doesn’t describe underlying mathematical phenomena. The different colors of each vortex shows whether that vortex is a sink or a source, essentially.

I was told most of this after the fact by Miles — who researches fluid dynamics, is a friend from grad school, and was my coauthor on a paper about the mean value theorem. I do not typically think about fluid dynamics (and did not write the paper), and it’s a bit funny how I got involved in the production of this cover. But it was fun, and we produced many arresting images. In the future Miles and I intend to revisit these images and better describe how the various aspects of the image describes and reflects the underlying mathematical behavior.

As a fun aside — we didn’t only produce one image. We made many, and we made many configurations.2 In my work on visualizing modular forms, I developed a few techniques for color selection from matplotlib style colormaps, and produced several variants. I’ve collected a few of these below.

Posted in Art, Expository, Math.CA, Mathematics | Leave a comment