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The Fibonacci zeta function



Fibonacci numbers and their zeta functions

Let F (n) denote the nth Fibonacci number, defined through the linear

recurrence F (n + 2) = F (n + 1) + F (n) with initial conditions

F (0) = 0,F (1) = 1. As is surely familiar, the sequence begins

0, 1, 1, 2, 3, 5, 8, 13, . . .

The full Fibonacci zeta function is the lacunary zeta function

ζFib(s) :=
∑
n≥1

1

F (n)s
=

1

1s
+

1

1s
+

1

2s
+

1

3s
+

1

5s
+ · · ·

The Fibonacci numbers F (n) grow exponentially, and thus it’s trivial to

see that the series converges for Re s > 0.

We will also investigate the zeta function associated to odd-indexed

Fibonacci numbers,

Φ(s) :=
∑
n≥1

1

F (2n − 1)s
=

1

1s
+

1

2s
+

1

5s
+

1

13s
+ · · ·
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Simple analytic continuation

Recall the classical formula

F (n) =
ϕn − (−ϕ)−n

√
5

,

where ϕ = (1 +
√
5)/2 is the golden ratio. Using binomial series, it is

straightforward to give a meromorphic continuation for the Fibonacci

zeta function and Φ(s). We find that

Φ(s) =
∑
n≥1

5s/2

(ϕ2n−1 + ϕ1−2n)s
= 5s/2

∞∑
n=1

ϕ(2n−1)s
(
ϕ4n−2 + 1

)−s

= 5s/2
∞∑
n=1

ϕ(2n−1)s
∞∑
k=0

(
−s

k

)(
ϕ4n−2

)−s−k

= 5s/2
∞∑
k=0

(
−s

k

)
ϕs+2k

ϕ2s+4k − 1
,

which gives meromorphic continuation to C.
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What does this say about the analytic behavior?

Φ(s) = 5s/2
∞∑
k=0

(
−s

k

)
ϕs+2k

ϕ2s+4k − 1
.

There are poles when ϕ2s+4k − 1 = 0, giving poles at

s = −2k + ℓ
πi

log ϕ
(k ≥ 0, ℓ ∈ Z).

There is a half-lattice of poles.

For fun, let’s look at it.
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Every pole comes close to a zero because Φ(s) grows too slowly for

interesting behavior. Recall Jensen’s Formula from early harmonic

analysis.

For f (nontrivial) meromorphic on the closed disk BR(0), let a1, . . . ap
denote the zeros of f in BR and let b1, . . . , bq denote the poles of f in

BR (counting multiplicity for both). Write f = cf z
ord(0) + . . ., where cf

is the leading coefficient of the Laurent expansion at 0. Then

log|cf | =
∫ 2π

0

log|f (Re iθ)|dθ
2π

−
p∑

i=1

log

∣∣∣∣Rai
∣∣∣∣+ q∑

j=1

log

∣∣∣∣Rbj
∣∣∣∣

− (ord(0)) logR.

In this case, ignoring constants and estimating growth for Φ(s), we find

that

−
p∑

i=1

log

∣∣∣∣Rai
∣∣∣∣+ q∑

j=1

log

∣∣∣∣Rbj
∣∣∣∣≪ logR.
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Suggesting a modular connection

These zeta functions exist in the literature. Landau (inconclusively)

studied the value ζFib(1) in [Lan99], but noted that Φ(1) can be

expressed as special values of classical theta functions:

Φ(1) =

√
5

4
θ22

(
3−

√
5

2

)
,

where

θ2(q) =
∑
n∈Z

q(n+1/2)2 .

And there are a series of more recent results showing that ζFib(2k) is

transcendental for all k ≥ 1 (analogous to ζ(2k)) (due to Duverney,

Nishioka, Nishioka, Shiokawa, Nesterenko, and others).

The idea is to combinatorially represent these special values as a

nontrivial polynomial of certain Eisenstein series, and then to use a

general theorem of Nesterenko on transcendentality of Eisenstein series.
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Connections to modular forms



Let r1(n) = #{n = m2 : m ∈ Z} (essentially a square-indicator function).

Then the classical theta function

θ(z) :=
∑
n∈Z

e2πin
2z =

∑
n≥0

r1(n)e
2πinz

is a (weight 1/2) modular form on Γ0(4), and its coefficients recognize

squares.

Our key fact for relating the Fibonacci numbers to modular forms is the

following criterion for determining whether a number N is Fibonacci.

Lemma

A nonnegative integer N is a Fibonacci number iff either 5N2 + 4 or

5N2 − 4 is a square. Further, N is an odd-indexed Fibonacci number iff

5N2 − 4 is a square, and even-indexed iff 5N2 + 4 is a square.

(We’ll return to this lemma later).
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Shifted convolutions

n is an odd-indexed Fibonacci number iff 5n2 − 4 is a square. In terms of

r1, this is equivalent to requiring that

r1(5n
2 − 4) ̸= 0 ⇐⇒ r1(5n − 4)r1(n) ̸= 0.

Thus

Φ(s) =
∑
n≥1

1

F (2n − 1)s
=

1

4

∑
n≥1

r1(5n − 4)r1(n)

ns/2
,

which is a shifted convolution Dirichlet series formed from θ. Given

modular forms f =
∑

a(n)e(nz) and g =
∑

b(n)e(nz), there is a general

procedure one might try to follow to understand shifted convolutions∑
n≥1

a(n)b(n ± h)

ns
,

building on ideas of Selberg, Sarnak, Goldfeld, Hoffstein, Hulse (and

others).
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The idea here is to consider V (z) = θ(5z)θ(z)y1/2, which is a weight 0

automorphic form on Γ0(20, χ) whose 4th Fourier coefficient is

√
y
∑
n≥1

r1(5n − 4)r1(n)e
−20nπy .

To study this as a Dirichlet series, it is convenient to use the real analytic

Poincaré series

P4(z , s) =
∑

γ∈Γ∞\Γ0(20)

Im(γz)se2πi4γzχ(γ).

Then one can compute that

4Φ(2s) =
∑
n≥1

r1(m)r1(5m − 4)

ms
=

(20π)s⟨V ,P4(·, s + 1
2 )⟩

Γ(s)
.

Thus the (odd-indexed) Fibonacci zeta function Φ(s) can be recognized

as an inner product between automorphic forms.
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The Poincaré series P4(z , s) has meromorphic continuation to C and is in

L2(Γ0(20, χ)\H), and thus the equality

4Φ(2s) =
(20π)s⟨V ,P4(·, s + 1

2 )⟩
Γ(s)

reproves an abstract meromorphic continuation of Φ(s).

But there is something unusual going on. The Poincaré series P4(z , s) has

an enormous number of chaotic, transcendental, poorly understood poles.
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One way to understand the meromorphic continuation of the P4(z , s) is

to use its spectral decomposition.

P4(z , s) =
∑
j

⟨µj ,P4(·, s)⟩µj(z) + (continuous),

where µj ranges over a basis of Maass eigenforms and the ‘continuous’

part refers to a sum over Eisenstein series.

(It turns out that the first sets of poles all come from the discrete

spectrum (except for a distinguished pole at s = 0), and we will focus

entirely on the discrete spectrum in this talk).

We study analytic behavior of Φ(2s) through

4Φ(2s) =
(20π)s

Γ(s)

∑
j

⟨µj ,P4(·, s)⟩⟨V , µj⟩+ (continuous).
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But not every pole from the Poincaré series yields a pole in Φ(2s). Many

parts of the spectral expansion disappear. In particular, the only Maass

forms that contribute are self-dual.

Lemma

⟨V , µj⟩ = 0 unless µj is self-dual.

(proof sketch).
Recognize θ as the residue of the weight 1/2, level 20 Eisenstein series

E
1
2 (z ,w). This will work as the space of modular forms of weight 1/2 on

Γ0(20) is 1-dimensional. Then

⟨V , µj⟩ = ⟨y 1
2 θ(5z)θ(z), µj⟩ = c Resw= 3

4
⟨y 1

4 θ(5z)E
1
2 (z ,w ; Γ0(20)), µj⟩

= c ′ Resw= 3
4

Γ(w − 1
4 + itj)Γ(w − 1

4 − itj)

(10π)wΓ(w + 1
4 )

∑
n≥1

ρj(−5n2)

n2w− 1
2

.

The inner product against the Eisenstein series leads to a Rankin-Selberg

type expansion for what is nearly the symmetric square L-function

associated to µj .
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Self-dual Maass forms

Self-dual forms of the type that contribute were studied by Maaß himself.

Let η(b) be the Hecke character on Q(
√
5) by

η
(
(a+ b

√
2)
)
= sgn(a+ b

√
5) sgn(a− b

√
5)
∣∣∣a+ b

√
5

a− b
√
5

∣∣∣ iπ
2 log((1+

√
5)/2)

.

We note that the number ϕ = (1 +
√
5)/2 is a fundamental unit for

Q(
√
5), and that defining η on principle ideals is sufficient as O(

√
5) is a

PID. For each integer m, consider the function

µm(z) :=
∑
n≥1

∑
N(b)=n

η(b)m
√
yK imπ

2 log((1+
√

5)/2)
(2πny) ·

{
cos(2πnx), 2 ∤ m
sin(2πnx), 2 | m.

Following Maaß, and as recounted in [Bum98, Theorem 1.9.1], the

functions µm(z) are Maass cusp forms for Γ0(20) with nebentypus χ.

The coefficients of µm are real, and thus self-dual.

These are dihedral Maass forms.
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Polar comparison: binomial continuation

As a quick check, we examine the first line of poles. From the simple

binomial expression, we have the continuation

4Φ(2s) = 4 · 5s
∞∑
k=0

(
−2s

k

)
ϕ2s+2k

ϕ4s+4k − 1
,

so that the poles on the line Re s = 0 all come from the single term

5sϕ2s/(ϕ4s + 1), which are at

s = ℓ
πi

2 log ϕ
(ℓ ∈ Z).
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Polar comparison: modular continuation

From the discrete portion of the continuation of P4(z , s), we have

4Φ(2s) ≈ (20π)s

Γ(s)

∑
j

⟨µj ,P4(·, s)⟩⟨V , µj⟩

≈ (20π)s

Γ(s)

∑
j

ρj(4)
√
πΓ(s + itj)Γ(s − itj)

(16π)sΓ(s + 1
2 )

⟨V , µj⟩,

which has potential poles at s = ±itj along the line Re s = 0. Here, tj is

the “type” associated to the Maass form. The “types” associated to the

dihedral Maass forms above are exactly

itm =
mπi

2 log ϕ
(m ∈ Z,m ̸= 0).

Thus the poles of Φ(2s) line up perfectly with the poles coming from the

dihedral Maass forms (and a distinguished pole at s = 0). This story

continues for all poles, not just those on Re s = 0.
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Rolling up your sleeves and explicitly compute every component of the

spectral resolution gives an alternate, explicit meromorphic continuation:

Φ(s) =
5s/2

8Γ(s) log ϕ

∑
m∈Z

(−1)mΓ
( s
2
+

πim

2 log ϕ

)
Γ
( s
2
− πim

2 log ϕ

)
.

(See [AKLDW25] for details).

The growth properties of Φ(s) are clear in this expansion.
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A binomial expansion of Φ(s) shows a half-lattice of poles. A spectral

expansion shows poles coming from eigenvalues of lots of Maass forms,

and the “only” way to get a half-lattice is if almost all Maass forms don’t

contribute.

This work suggests that Φ(s) should have an intrinsic expression as a

dihedral Galois representation. . . but I don’t know how to find it.
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Generalized Fibonacci Zeta

Functions



The key idea to the method of recognizing the relationship was the

lemma relating Fibonacci numbers to squares.

Lemma

A nonnegative integer N is a Fibonacci number iff either 5N2 + 4 or

5N2 − 4 is a square. Further, N is an odd-indexed Fibonacci number iff

5N2 − 4 is a square, and even-indexed iff 5N2 + 4 is a square.
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Explanation of Lemma

We can view this lemma as describing behavior of units in O(
√
5). Any

integer in O(
√
5) can be written uniquely as

x = m + n 5+
√
5

2

(
=

u + n
√
5

2
with u = 2m + 5m

)

and x is a unit iff N(x) = ±1, which is equivalent to the condition that

u2 = 5n2 ± 4.

Suppose u and n are a positive solution making x a unit. As ϕ is a

fundamental unit

x =
u + n

√
5

2
= ϕr .

22



Recall Binet’s formulas for the Fibonacci and Lucas numbers, which

express the nth Lucas or Fibonacci numbers in terms of ϕ.

L(r) = ϕr + ϕr , F (r) =
ϕr − ϕr

√
5

.

Then

x =
u + n

√
5

2
= ϕr =

1

2

[
(ϕr + ϕr ) +

ϕr − ϕr

√
5

√
5
]

=
1

2

[
L(r) + F (r)

√
5
]
,

where L(r) are the Lucas numbers and F (r) are the Fibonacci numbers.
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Explanation of Lemma (cont.)

Thus if there is a (positive) solution (u, n) to u2 = 5n2 ± 4, then

u + n
√
5

2
=

L(r) + F (r)
√
5

2

for some r , and thus n is Fibonacci. Conversely, if n = F (r) for some r ,

then

ϕr =
1

2

[
L(r) + F (r)

√
5
]

=⇒ L(r)2 − 5F (r)2 = ±4,

and thus n is part of a solution to u2 = 5n2 ± 4.

The condition that 5n2 ± 4 is a square is really an indicator that a

particular element is a unit in a ring of integers. This generalizes readily.
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Generalization of Lemma

We can generalize this lemma to describe the behavior of units in

O(
√
d). Any integer in O(

√
d) can be written uniquely as

x = m + n
q+

√
q

2 ,

{
q = d d ≡ 1 mod 4

q = 4d d ≡ 2, 3 mod 4

and x is a unit iff N(x) = ±1, which is equivalent to the condition that

u2 = qn2 ± 4, (where u = 2m + qn).

Suppose u and n are a positive solution making x a unit. Let ε be a

fundamental unit

x =
u + n

√
q

2
= εr =

1

2

[
(εr + εr ) +

εr − εr
√
q

√
q
]

=
1

2

[
L√d(r) + F√

d(r)
√
q
]
,

where L√d(r) = Tr(εr ) are
√
d-Lucas numbers and F√

d(r) = Tr(εr/
√
q)

are
√
d-Fibonacci numbers.
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Generalization of Lemma (cont.)

Thus if there is a (positive) solution (u, n) to u2 = qn2 ± 4, then

u + n
√
q

2
=

L√d(r) + F√
d(r)

√
q

2

for some r , and thus n is
√
d-Fibonacci. Conversely, if n = F√

d(r) for

some r , then

εr =
1

2

[
L√d(r) + F√

d(r)
√
q
]

=⇒ L√d(r)
2 − qF√

d(r)
2 = ±4,

and thus n is part of a solution to u2 = qn2 ± 4.

(Note that if d = 2 or d ≡ 3 mod 4, the equality q = 4d has the effect of

making most 4s appearing above to factor out).
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From this point of view, the major idea is that the Fibonacci numbers

F (n) are traces of powers of the fundamental unit (divided by
√
5),

F (n) = Tr(ϕn/
√
5).

For the ring of integers associated to a quadratic extension Q(
√
d), if we

define
√
d-Fibonacci numbers as

F√
d(n) = Tr(εn/

√
q)

as above, then the lemma applies and
√
d-Fibonacci numbers and we see

that
√
d-Fibonacci numbers are detectable via a quadratic form that can

be built out of theta functions.
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Trace zeta function approach

If the fundamental unit ε satisfies N(ε) = −1, then the proof methods

described above for Φ(s) show that

Φd(s) =
∑
n≥1

1

F√
d(2n − 1)s

=
∑
n≥1

1

Tr(ε2n−1/
√
q)s

,

using Vd = θ(qz)θ(z) in place of V . It also remains true that the poles

come from self-dual Maass forms.

(If there are not units of norm −1, then one must instead study the series∑
n≥1

r1(qn+4)r1(n)

ns
,

with a + instead of a −. For technical reasons, it is necessary to perform

a different continuation of this series. I don’t get into that in this talk).
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Pell’s Equation



The equations u2 = qn2 ± 4 are Pell equations. It is also possible to

construct a zeta function by interpreting the Pell equation directly as a

quadratic form.

For example, we will consider the Pell equations

x2 − 2y2 = −h, (h ∈ N>0).

Solutions do not exist for every h, but when solutions exist they are

exponentially sparse and satisfy a linear recurrence relation.

Analogous with the Fibonacci-zeta case, we can recognize this zeta

function as

4Dh(s) =
∑
m≥1

r1(m)r1(2m − h)

ms
.

(The identification to solutions x2 − 2y2 = −h is through y2 = m).
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Alternately, we note that for each h there exists a number d = d(h) of

fundamental solutions (u1, v1), . . . , (ud , vd). Then the y part of the

solutions are given by the linear recurrences

yk(n) = 6yk(n − 1)− yk(n − 2) = αk(3 + 2
√
2)n + βk(3− 2

√
2)n,

where αk = 1
2vk +

1
2
√
2
uk and βk = 1

2vk −
1

2
√
2
uk . The exact fundamental

solutions are not trivial to determine in general.

For any fixed h, it is straightforward to adapt the binomial series method

to provide an analytic continuation for the lacunary Dirichlet series

formed from the solutions yk(n). Let ω = 3 + 2
√
2, and note that

ω−1 = ω. Then we define

Dh(s) =
∑
n≥0
k≤d

1

(αkωn + βkω−n)2s
=
∑
k≤d

1

α2s
k

∑
n≥0

ω−2ns

(1 + (βk/αk)ω−2n)2s
.

This latter expression has meromorphic continuation to the plane and is

analytic for Re s > 0 (via binomial expansion).
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To compare with the previous trace-zeta function, note that ε = 1 +
√
2

is a fundamental unit, N(ε) = −1, and ω = ε2 = 3 + 2
√
2.

Thus the linear recurrences defining the solutions yk(n) are in terms of ε2

and ε2. The major distinction is that the initial conditions for the linear

recurrences are different (and there may be multiple, depending on h in

x2 − 2y2 = −h).
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We recognize this again as a shifted convolution, now with

V = θ(2z)θ(z)
√
y , which is a modular form on Γ0(8, χ). The hth Fourier

coefficient of V contains the relevant arithmetic data, and we use a

Poincaré series that extracts the hth Fourier coefficient:

Ph(z , s) =
∑

γ∈Γ∞\Γ0(8)

Im(γz)se2πihγzχ(γ).

Then one can compute that

Dh(s) =
(8π)s⟨V ,Ph(·, s + 1

2 )⟩
Γ(s)

,

and abstractly we get another continuation.

This same construction applies to any Pell equation (and restricting to

Pell equations of the for x2 − dy2 = −h (with a minus) accomplishes the

same minor technical detail as requiring N(ε) = −1 previously).
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Remarks on x2 − 2y 2 = −h case

In unpublished work, I examined the x2 − 2y2 = −h in detail.

Theorem

For h ≥ 1 and Re s ≫ 1, we have that

Dh(s) =
2s
√
πσχ

0 (h)Γ(s)

log(1 +
√
2)hsΓ(s + 1

2 )
+ 2s

√
π
∑
j

ρj(h)

hs
G (s + 1

2 , itj)

Γ(s)
⟨V , µj⟩

in which G (s, z) = Γ(s − 1
2 + z)Γ(s − 1

2 − z)/Γ(s).

Here, σχ
0 (h) =

∑
d|h χ(d), the first term comes exactly from a dihedral

Eisenstein series and all the Maass forms that appear are again dihedral.
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Remarks (continued)

Comparing residues of poles at s = 0 across the binomial representation

and the modular representation shows that

2d

logω
= Ress=0

2s
√
πσχ

0 (h)Γ(s)

log(1 +
√
2)hsΓ(s + 1

2 )
=

σχ
0 (h)

log(1 +
√
2)

,

where d = d(h) is the number of fundamental solutions to the Pell

equation.

Recalling that ω = (1 +
√
2)2, we see that that d = σχ

0 (h), which gives a

class number formula for solutions to the Pell equation.1

1This is not a new result, but it is a nice result.

34



Relation to 3APs of Squares



The function r1(m)r1(2m − h) trivially detects a 2AP of squares,

{m, 2m − h}. Thus

4Dh(s) =
∑
m≥1

r1(m)r1(2m − h)

ms

as a Dirichlet series detects 2APs of squares as m ranges.

Naive question

Can we understand 3APs of squares {h,m, 2m − h} by studying the

(multiple) Dirichlet series

D(s,w) =
∑
h≥1

4Dh(s)r1(h)

hw
=
∑

m,h≥1

r1(h)r1(m)r1(2m − h)

mshw
?

This is a Dirichlet series formed from individual Pell-type Dirichlet

series. Is it understandable?
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Answer: Yes.

But not through the raw binomial series continuation of Dh(s). The

uncertain behavior of the fundamental solutions makes computing with

the explicit binomial series untenable.

But the modular form continuation is robust enough to make sense of

D(s,w).
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Heuristic explanation

From the evaluation

Dh(s) =
2s
√
πσχ

0 (h)Γ(s)

log(1 +
√
2)hsΓ(s + 1

2 )
+2s

√
π
∑
j

ρj(h)

hs
G (s + 1

2 , itj)

Γ(s)
⟨V , µj⟩,

we can study what would come from
∑

h≥1 Dh(s)r1(h)h
−w . In the first

term, the sums over h and j become∑
h≥1

σχ
0 (h)r1(h)

hs+w
=
∑
h≥1

σχ
0 (h

2)

h2s+2w

∑
h≥1

ρj(h
2)

h2s+2w
.

Both of these are essentially symmetric square L-functions associated to

well-studied objects, and are thus understandable.

This is enough to give meromorphic continuation in w , and D(s,w) has

meromorphic continuation to all of C2 [HKLDW20a].
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Application: equidistribution

If a2, b2, c2 is a 3AP of squares with c2 − b2 = b2 − a2, then

a2 + c2 = 2b2. Thus (a/b, c/b) is a rational point on the circle

X 2 + Y 2 = 2.

Let A(b) denote the number of rational points on X 2 + Y 2 = 2 with

(reduced) denominator b. Then∑
d|b

A(d) = #{(a, c) ∈ Z2 : a2 + c2 = 2b2} = r2(b
2).

As r2(n)/4 is multiplicative, we can compute that∑
n≥1

A(n)

ns
=

4ζ(s)L(s, χ4)

(1 + 2−s)ζ(2s)
,

and Perron-type analysis shows that the number of (positive) rational

points on X 2 + Y 2 = 2 of the reduced form (a/b, c/b) with 1 ≤ b ≤
√
X

is ∑
b≤X

=
4

π
X + O(X

2
3+ϵ).
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Equidistribution (cont)

The number of (positive) rational points on X 2 + Y 2 = 2 of the reduced

form (a/b, c/b) with 1 ≤ b ≤
√
X is∑

b≤X

=
4

π
X + O(X

2
3+ϵ).

If these rational points equidistribute, then the number of points with

a/b ≤ δ should be approximately

arcsin(δ/2)

2π

4

π
X .

Theorem (HKLDW)

These points do equidistribute, and satisfies the asymptotic

arcsin(δ/2)

2π

4

π
X + O(X

3
4+ϵ).
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Other applications

Theorem

The number of primitive 3APs of squares a2, b2, c2 with c2 ≤ X is

√
2

π2
log(1 +

√
2)
√
X + O(X

3
8+ϵ).

Theorem

(· · · ) with with a2 ≤ Y and b2 ≤ X is

1√
2 π2

√
Y log(X/Y ) + c

√
Y + O(X ϵY

3
8+ϵ).

Theorem

(· · · ) with ab ≤ X is

2
√
2

π2 2F1(
1
4 ,

1
2 ,

5
4 ,

1
2 )
√
X + O(X

3
4+ϵ).
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Due to the connections between 3APs of squares, right triangles, and

elliptic curves, we get several refined distributional results on right

triangles. For example:

Theorem

The number of primitive integer right triangles with hypotenuse at most

X and whose acute angles are within ω of π/4 is

2ω

π2
X + O(X

3
4+ϵ).

(Yes, I think this is funny-looking — but I’m thrilled that this comes from

studying a multiple Dirichlet series of
√
2-Fibonacci zeta functions)!
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Proof sketches

All of these are proved in essentially the same way — classic complex

analytic number theory once we have a Dirichlet series with

understandable meromorphic continuation.

For example, with

D(s,w) =
∑

m,h≥1
(m,h)=1

r1(h)r1(m)r1(2m − h)

mshw
,

we have∑
m≤X

∑
h/m≤δ

r1(m)r1(h)r1(2m − h) ≈
∫∫

D(s − w ,w)
X s

s

δw

w
ds dw .
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History of this project

In [HKLDW20b], we examined a naive shifted sum for detecting if a

given number t is congruent:∑
m,n≤X

r1(m + h)r1(m − h)r1(m)r1(tn).

This sum is asymptotically of size
√
X if t is congruent, and is otherwise

0. Thus whether t is congruent is determined by poles of∑
m,n≥1

r1(m + h)r1(m − h)r1(m)r1(th)

mshw
.

This seemed like a potential refinement of Tunnell’s theorem, but we

were unable to understand this series. By counting congruent numbers

(instead of detecting them), we arrive at D(s,w), which we understand

through Dh(s) as above.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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