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The language of murmurations is based in L-functions.

A general (self-dual) L-function has the shape

L(s, π) =
∑
n≥1

a(n)

ns

and satisfies a functional equation

Λ(s, π) := NsG (s)L(s, f ) = ϵN1−sG (1− s)L(1− s, f ).

For functions associated to π in some family F (ordered by some height

function, typically analytic conductor) murmuration phenomena are

correlations between the coefficients a(n) and the root numbers ϵ.



Given a smooth nonnegative weight function Φ : (0,∞) −→ R of

compact support and a complex-valued function f defined on a family F
of L-functions ordered with respect to a height function h, we look at

AF
Φ (f ,X ) = A(f ,X ) :=

∑
π∈F

Φ(h(π)/X )f (π),

and more generally expected values

E
π∈F

[f ;X ] :=
A(f ,X )

A(1,X )
.

For example, take F = E±, elliptic curves ordered by conductor with root

number ϵ = ±1; and take Φ to be the indicator function on [X , 2X ]. The

well-known initial murmurations of elliptic curves are plots of

EE± [aE (p)
√
p;X ] =

∑
E∈E±

X≤cond(E)≤2X

aE (p)
√
p∑

E∈E±

X≤cond(E)≤2X

1

for various primes p and in various dyadic ranges [X , 2X ].
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One Level Density

For “nice” families F of L-functions L(s, f ), ordered by conductor Nf , let

F(N) = {f ∈ F : Nf = N}.

Katz and Sarnak predict that for large N, the low-lying zeros of L(s, f )

for f ∈ F(N) act like eigenvalues of matrices drawn randomly from

certain groups of matrices associated to F . One measure of zero

behavior is one level density, which is

OLDΦ(F) := lim
N→∞

1

#F(N)

∑
f∈F(N)

∑
γf

Φ

(
γf logN

2π

)
,

where γf runs through nontrivial zeros of L(s, f ) and Φ is a “nice” test

function. This measures the distribution of low-lying zeros on average

over elements of large conductor.
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Katz and Sarnak predict that for many families, there is a measure WF

coming from matrices such that

OLDΦ(F) =

∫
R
Φ̂(x)ŴF (x)dx

for all nice test functions Φ.

Theorem (Iwaniec–Luo–Sarnak 2000)

Assume GRH. Let Φ be a Schwarz function with supp(Φ̂) ⊂ (−2, 2).

Let H±
k (N) denote a Hecke eigenbasis of modular newforms of weight k

and root number ϵf = ±1. Then

OLDΦ(H
±
k ) =

∫
R
Φ̂(x)ŴSO(±)(x)dx

where WSO(+) = 1 + sin(2πx)
2πx and WSO(−) = 1− sin(2πx)

2πx + δ0(x).
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Connection to Murmurations

Unravelling, ILS shows that (under GRH)

lim
1

#H±
k (N)

∑
f∈H±

k (N)

∑
γf

Φ

(
γf logN

2π

)
=

∫
R
Φ̂(x)ŴSO(±)(x)dx .

The explicit formula relating zeros to sums over primes implies that∑
γf

Φ

(
γf logN

2π

)
≈

∑
p

λf (p) log p√
p

Φ̂

(
log p

logN

)
.

Note that if Φ̂ is supported on [−θ, θ], then only primes ≤ Nθ appear.

Hence one level density behaves like

E
p∼Nθ

E
f∈H±

k (N)
[λf (p) log p/

√
p].



E
p∼Nθ

E
f∈H±

k (N)
[λf (p) log p/

√
p]

is almost an averaged murmuration behavior (with some prime scaling),

except that murmurations concern p ∼ N instead of p ∼ Nθ. Specifically

ŴSO(+)(y) = δ0(y) +
1[−1,1](y)

2

ŴSO(−)(y) = δ0(y) +
2− 1[−1,1](y)

2
.

There is a discontinuity in behavior exactly when ±1 ∈ Supp(Φ̂).

Murmurations arise from the transition range for one-level density for

known families, which is much more mysterious than p ∼ Nθ for θ < 1 or

θ > 1.



Unpublished result

In some cases, it is possible to prove murmuration-like phenomena from

the same work that goes into one-level density results. The proofs in

Iwaniec-Luo-Sarnak [ILS2000] show∑
f∈H±

k (1) Φ(Nf /X )
λf (p)

√
p

L(1,sym2f )∑
f∈H±

k (1) Φ(Nf /X ) 1
L(1,sym2f )

= ±
∑
c≥1

µ2(c)

c2φ(c)
Φ(∗),

which describes correlations between λf (p)/L(1, sym
2f ) with root

numbers.



Unpublished result

Sarnak refers to this an arithmetic normalization murmuration,

AF,arith
Φ (f ,X ) :=

∑
π∈F

Φ(h(π)/X )
f (π)

arith(π)
,

Earith
π∈F [f ;X ] :=

AF,arith
Φ (f ,X )

AF,arith
Φ (1,X )

.

Then the unpublished result is the arithmetically normalized murmuration

Earith
π∈H±

k (1)
[λf (p)

√
p;X ] = ±

∑
c≥1

µ2(c)

c2φ(c)
Φ(∗).



Enter the trace formula

The key tool at the start of Iwaniec-Luo-Sarnak’s arithmetically

normalized murmuration is to use the Petersson trace formula

(∗)
∑

f∈Hk (1)

af (m)af (n)

∥f ∥2
= δ[m=n]+2πi−k

∑
c>0

S(m, n; c)

c
Jk−1

(4π√mn

c

)
.

Here S(m, n; c) is the Kloosterman sum
∑

d∈(Z/cZ)×
e

2πi
c (md+nd) and Jν(x)

is the Bessel function of the first kind.

We don’t focus on the details. Instead, we note that this formula renders

averages over Hk(1) as a sum over completely explicit, directly

computable things.



More generally, every proved murmuration that I know uses some trace

formula.

1. Zubrilina [Z2023] uses the Eichler-Selberg trace formula for fixed

weight, varying level holomorphic modular forms.

2. Yesterday, Steven Wang [W2024] uses similar techniques to prove

murmurations of Hecke L-functions.

3. In [BBLLD2023], we use the Eichler-Selberg trace for murmurations

of fixed level, varying weight holomorphic modular forms.

4. In [LOP2023], they use Gauss sums (traces of a character on finite

fields) and Poisson summation (the most classical trace formula) for

murmurations of Dirichlet characters.

5. In [BLLDSHZ2024], we use a Selberg-Strömbergsson trace formula

for murmurations of Maass forms of fixed level and weight with

varying eigenvalue.

6. On Monday, Kimball Martin [M2024B, based on M2024A] uses a

trace formula due to Yamauchi to prove (morally) a

murmuration-like phenomenon of local root numbers of modular

forms.
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Although the details differ, the broad mechanism behind many of these

proofs look the same. To radically oversimplify: start with a trace

formula and then perform a sufficient amount of averaging in each

non-fixed aspect.



Flaws

There are problems with relying only on trace formulas to prove

murmurations.

Perhaps most obviously, we don’t know of nearly enough trace formulas

to explain all the murmuration phenomena that we can experimentally

observe:

Like elliptic curves, or genus 2 curves, or more than half of the other

phenomena that Drew mentioned in his talk on Monday.
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There are also qualitative flaws.

Recall the unpublished arithmetic

murmuration of ILS:

Earith
π∈H±

k (1)
[λf (p)

√
p;X ] = ±

∑
c≥1

µ2(c)

c2φ(c)
Φ(∗).

This is very close to the murmuration function in BBLLD2023 and

BLLDSHZ2024, which is

±1

ζ(2)

∑
a,q∈Z>0

gcd(a,q)=1

(a/q)−2∈E

µ(q)2

φ(q)2σ(q)

(q
a

)3

,

also weighted sum over point masses at something like squarefree

integers and with similar weights.

But why are the functions identical in BBLLD2023 and BLLDSHZ2024,

and is there an easier way to explain where the differences with ILS come

from (without going through the whole trace formula)?
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If you have a “reasonable” trace formula and perform “reasonable”

averages, you can probably prove a murmuration.

For example, when experimenting if there were murmurations of Maass

forms in the eigenvalue aspect, I looked at data coming from the

Kuznetsov trace formula (here, for level 1):∑
j≥1

h(rj)

cosh(πrj)

λj(n)λj(m)

∥µj∥2
+ĥ(0) =

∑
c≥1

S(n,m; c)

c
k∗(4π

√
mn/c)+δ[m=n]k(0).

Here 1
4 + r2j is the eigenvalue of the jth Maass form µj , h is a “nice”

function, and k∗ is a Bessel transform

k∗(x) =
i

π

∫
R

(
J2ir (x)− J−2ir (x)

) rh(r)

cosh(πr)
dr .

Choosing n = 1 gives a normalized sum of the mth coefficient of Maass

forms, normalized by ∥µj∥2 ≍ L(1,Sym2µj).



Heuristic, slightly old plots of Kuznetsov trace based plots for arithmetic

Maass murmurations.
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In BLLDSHZ2024 we proved a version without arithmetic weights. But

there appears to be an arithmetically weighted murmuration that is

qualitatively similar. . . and presumably provable using the Kuznetsov

trace formula (and otherwise similar analysis to BLLDSHZ2024).

(And it would be very nice if we could “just see” what the murmuration

is without doing all the work, but I don’t know how to do that).
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Aside on applying murmurations

The Maass form data in the LMFDB is incomplete. Many forms weren’t

computed with sufficient precision to directly deduce the sign of the

functional equation.

But murmurations are all about correlations between a(p) and this sign.

This semester, BBCDLLDOQV1 have been looking into using these

correlations to predict the missing signs.

Neural networks trained on Maass form data can predict the correct sign

(on data of LMFDB size) with extremely high accuracy. The betting

game based on murmurations is a very successful game.

1Joanna Bieri, Giorgi Butbaia, Edgar Costa, Alyson Deines, Kyu-Hwan Lee, David

Lowry-Duda, Thomas Oliver, Yidi Qi, and Tamara Veenstra



Several explorable murmurations



Extend BBLLD2023 and BLLDSHZ2024

There are no major hurdles preventing one from extending BBLLD2023

(modular murmurations in weight aspect) to general level using either the

Eichler-Selberg or Petersson trace formulas.

There are major hurdles in the way of directly extending BLLDSHZ2024

(Maass murmurations) to general level using the Selberg-Strömbergsson

trace formula, but probably not using the arithmetical normalization in

Kuznetsov.

In a different direction, it should be possible to prove murmurations for

weight 1 Maass forms using Kuznetsov. (Both the weight and level

generalizations using non-arithmetic normalization should be attainable

with a forthcoming trace formula of BBKLLDSH202?).
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GL(3) murmuration — symmetric square

Here is a strategy to prove a GL(3)-type murmuration: if f is a

holomorphic modular form with coefficients af (n), then Sym2(f ) is a

GL(3) form, and aSym2f(p) = af (p
2).

Thus applying a GL(2) type trace formula (such as Eichler-Selberg or

Petersson) to study murmuration behavior across af (p
2) also identifies

murmuration behavior across aSym2f (p).

(BBLLDSH is currently investigating this).

The analogous construction using the Kuznetsov trace formula to study

murmurations in symmetric square lists of Maass forms is also (probably)

provable.
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More general sparse subsequences (maybe)

More generally, one could consider arbitrary sparse subsequences. Steven

Creech is studying correlations of af (q(n)) with root numbers, where

q(n) is an irreducible quadratic polynomial.

One could try to study af (p
m) to understand aSymmf(p) and thus study

higher GL(n) behavior. (I think this is hard, but I’m not completely sure).



More general sparse subsequences (maybe)

More generally, one could consider arbitrary sparse subsequences. Steven

Creech is studying correlations of af (q(n)) with root numbers, where

q(n) is an irreducible quadratic polynomial.

One could try to study af (p
m) to understand aSymmf(p) and thus study

higher GL(n) behavior.

(I think this is hard, but I’m not completely sure).



More general sparse subsequences (maybe)

More generally, one could consider arbitrary sparse subsequences. Steven

Creech is studying correlations of af (q(n)) with root numbers, where

q(n) is an irreducible quadratic polynomial.

One could try to study af (p
m) to understand aSymmf(p) and thus study

higher GL(n) behavior. (I think this is hard, but I’m not completely sure).



Murmurations where RH is false

It should also be possible to prove murmurations for a family of L-series

that don’t satisfy the Riemann Hypothesis.

To a weight k + 1
2 cuspidal modular form f , we can associate a Dirichlet

series D(s, f ) that has a functional equation

NsD(s, f )G (s) = εN1−sD(1− s, f̃ )G (1− s), analytic continuation, and

so on; but they don’t have RH.

Nonetheless, a version of the Petersson trace formula applies and the

analysis seems similar to ILS2000 and BBLLD2023. I expect provable

murmuration phenomena here too, showing that murmurations are

independent of RH.

(BBLLDSH is currently investigating this as of this week).

Similarly, a version of Kuznetsov applies to half-integral weight Maass

forms, and we should expect murmuration behavior there to be provable.
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Thank you very much.
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