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The murmurations phenomenon describes certain biases in averages of

coefficients of L-functions, unnoticed but for a sequence of unlikely

observations (and deep attentiveness from young mathematicians).



Elliptic Curves

An elliptic curve (defined over Q) is

an algebraic curve of the form

E : Y 2 = X 3 + aX + b

for integers a, b ∈ Z.

To an elliptic curve E , we can

associate an L-function

L(s,E ) :=
∏
p≥2

Lp(s)
−1 =

∑
n≥1

an(E )

ns
.

The coefficients an(E ) satisfy many

properties, but can be understood

explicitly.

Y 2 = X 3 − 675X + 13662
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When p is a prime, the coefficient carries local point-counting

information,

ap(E ) = p + 1−#E (Fp),

where #E (Fp) is the number of points on E mod p

the number of

projective1 points on E mod p, possibly including “points at ∞”.

For example, consider Y 2 = X 3 − 675X + 13662 over F5. These are

points with Y 2 ≡ X 3 + 2 mod 5, and there are 5 + 1 of these points

(2, 0), (3, 2), (3, 3), (4, 1), (4, 4), and (0 : 1 : 0).

We extend a(n) to composite n via∏
p

(1− ap(E )p
−s + p−2s+1) =

∑
n≥1

an(E )

ns
.

1projective points on the homogenized curve Y 2Z = X 3 + aXZ2 + bZ3.
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It’s easy to compute these points slowly. It’s much harder to compute

them quickly. But we’ve gotten very good, and now we make huge tables

and databases where we try to understand their properties.



A series of unlikely events

About two years ago, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and

Alexey Pozdnyakov experimented with using techniques from machine

learning to study elliptic curves. They used data from the LMFDB.
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a2(E0) a3(E0) a5(E0) a7(E0) a11(E0) · · ·
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...


They looked at ap(·) values of elliptic curves in the same order the

LMFDB uses (by conductor).
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Alexey decided to look at the weights in the PCA. But there were

thousands and thousands, so he decided to plot them.



A series of unlikely events

About two years ago, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and

Alexey Pozdnyakov experimented with using techniques from machine

learning to study elliptic curves. They used data from the LMFDB.

This shows for each prime p ∈ [2, 7919] the average of ap(·) where E

ranges over curves of conductor N ∈ [7500, 10000]. Points in blue are

from rank 0 curves, and points in red are from rank 1 curves.







They emailed Drew Sutherland, who happily began to collaborate (and

who has given several excellent talks on this). He computed much further

out.

There is a small normalization issue here. The x-axis label has changed.

It turns out that normalizing the x-axis to consider ratios p/N, where N

is the conductor of the elliptic curves, seems to make these plots uniform.
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Can we try to explain this phenomenon?

One form of the Birch and Swinnerton-Dyer conjecture implies

lim
X→∞

∑
p≤X

ap(E)
p∑

p≤X
1
p

=
1

2
− r .

A folklore conjecture (often attributed to Goldfeld) asserts that 50% of

elliptic curves have rank 0 and 50% of elliptic curves have rank 1.



This murmuration is not surprising

Conjecturally, half the time r = 1 and BSD suggests there should be a

negative correlation between the ap(E ) and p, and half the time r = 0

and there should be a positive correlation.
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Conjecturally, half the time r = 1 and BSD suggests there should be a

negative correlation between the ap(E ) and p, and half the time r = 0

and there should be a positive correlation.



Talk Outline

1. Lots of murmurations

2. Connections to one-level density

3. Things we can prove

4. Is machine learning useful?

5. Archimedean murmurations
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He, Lee, Oliver, Pozdnyakov, and Sutherland have carried out more

experiments and found many more, analogous, murmuration phenomena.

Even more experiments were carried out in July of 2023 at ICERM.
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elliptic curves from the Stein–Watkins database



More murmurations!

He, Lee, Oliver, Pozdnyakov, and Sutherland have carried out more

experiments and found many more, analogous, murmuration phenomena.

Even more experiments were carried out in July of 2023 at ICERM.

genus 3 curves with generic Sato–Tate group



This seems to really be about correlations between coefficients of

L-functions and the root numbers of the functional equations.

A general (self-dual) L-function has the shape

L(s, π) =
∑
n≥1

a(n)

ns

and satisfies a functional equation

Λ(s, π) := NsG (s)L(s, f ) = ϵN1−sG (1− s)L(1− s, f ).

For functions associated to π in some family F (ordered by some height

function, typically analytic conductor) murmuration phenomena are

correlations between the coefficients a(n) and the root numbers ϵ.



Given a smooth nonnegative weight function Φ : (0,∞) −→ R of

compact support and a complex-valued function f defined on a family F
of L-functions ordered with respect to a height function h, we look at

AF
Φ (f ,X ) = A(f ,X ) :=

∑
π∈F

Φ(h(π)/X )f (π),

and more generally expected values

E
π∈F

[f ;X ] :=
A(f ,X )

A(1,X )
.

For example, take F = E±, elliptic curves ordered by conductor with root

number ϵ = ±1; and take Φ to be the indicator function on [X , 2X ].

Then the murmuration plots shown before are exactly plots of

EE± [aE (p);X ] =

∑
E∈E±

X≤cond(E)≤2X

aE (p)∑
E∈E±

X≤cond(E)≤2X

1

for various primes p and in various dyadic ranges [X , 2X ].
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One Level Density

For “nice” families F of L-functions L(s, f ), ordered by conductor Nf , let

F(N) = {f ∈ F : Nf = N}.

Katz and Sarnak predict that for large N, the low-lying zeros of L(s, f )

for f ∈ F(N) act like eigenvalues of matrices drawn randomly from

certain groups of matrices associated to F . One measure of zero

behavior is one level density, which is

OLDΦ(F) := lim
N→∞

1

#F(N)

∑
f∈F(N)

∑
γf

Φ

(
γf logN

2π

)
,

where γf runs through nontrivial zeros of L(s, f ) and Φ is a “nice” test

function. This measures the distribution of low-lying zeros on average

over elements of large conductor.
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Katz and Sarnak predict that for many families, there is a measure WF

coming from matrices such that

OLDΦ(F) =

∫
R
Φ̂(x)ŴF (x)dx

for all nice test functions Φ.

Theorem (Iwaniec–Luo–Sarnak 2000)

Assume GRH. Let Φ be a Schwarz function with supp(Φ̂) ⊂ (−2, 2).

Let H±
k (N) denote a Hecke eigenbasis of modular newforms of weight k

and root number ϵf = ±1. Then

E (H±
k ; Φ) =

∫
R
Φ̂(x)ŴSO(±)(x)dx

where WSO(+) = 1 + sin(2πx)
2πx and WSO(−) = 1− sin(2πx)

2πx + δ0(x).
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Aside on modular forms

A modular form comes with two pieces of data:

1. a weight k, and

2. a group Γ0(N) = {γ ∈ SL(2,Z) : γ ≡ ( 1 ∗
0 1 ) mod N} of level N.

Then we say a holomorphic function f , defined on the complex upper

half-plane H = {x + iy : y > 0} is of level N and weight k if

f
(

az+b
cz+d

)
= (cz + d)k f (z) ∀γ =

(
a b

c d

)
∈ Γ0(N),

(and if it satisfies a certain complicated notion of holomorphy at the

boundary).



Modular forms, pictorially

The condition that f (γz) = (cz + d)k f (z) for all γ ∈ Γ0(N) gives an

infinite family of symmetries. As ( 1 0
0 1 ) ∈ Γ0(N), we get that

f (z + 1) = f (z).
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get a pretty good idea by looking at a picture.
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As noted above, a modular form f (z) is periodic. The “nice”

holomorphic properties guarantee that f equals its Fourier expansion

f (z) =
∑
n≥0

an(f )e
2πinz .

To a modular form f , we associate the Dirichlet series

L(s, f ) =
∑
n≥1

an(f )

ns
.

For it to be an actual L-function, a0(f ) must be 0 and f must be chosen

from a distinguished basis Hk(N) of “Hecke” forms. In this case, L(s, f )

satisfies a functional equation of the form

L(s, f )G (s) 7→ ϵf L(1− s, f )G (1− s) for some product of Γ functions,

G (s), and where ϵf ∈ {±1} is the root number or sign of the functional

equation.
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Connection to Murmurations

Unravelling, ILS shows that (under GRH)

lim
1

#H±
k (N)

∑
f∈H±

k (N)

∑
γf

Φ

(
γf logN

2π

)
=

∫
R
Φ̂(x)ŴSO(±)(x)dx .

The explicit formula relating zeros to sums over primes implies that∑
γf

Φ

(
γf logN

2π

)
≈
∑
p

λf (p) log p√
p

Φ̂

(
log p

logN

)
.

Note that if Φ̂ is supported on [−θ, θ], then only primes ≤ Nθ appear.

Hence one level density behaves like

E
p∼Nθ

E
f∈H±

k (N)
[λf (p) log p/

√
p].



E
p∼Nθ

E
f∈H±

k (N)
[λf (p) log p/

√
p]

is almost an averaged murmuration behavior (with some prime scaling),

except that murmurations concern p ∼ N instead of p ∼ Nθ. Specifically

ŴSO(+)(y) = δ0(y) +
1[−1,1](y)

2

ŴSO(−)(y) = δ0(y) +
2− 1[−1,1](y)

2
.

There is a discontinuity in behavior exactly when ±1 ∈ supp(Φ̂).

Murmurations arise from the transition range for one-level density for

known families, which is much more mysterious than p ∼ Nθ for θ < 1 or

θ > 1.



Unpublished result

In some cases, it would be possible to prove murmuration-like phenomena

from one-level density results. The proofs in ILS 2000 imply that∑
f∈H±

k (1) Φ(Nf /X )
λf (p)

√
p

L(1,sym2f )∑
f∈H±

k (1) Φ(Nf /X ) 1
L(1,sym2f )

= ±
∑
c≥1

µ2(c)

c2φ(c)
Φ(∗),

which describes correlations between λf (p)/L(1, sym
2f ) with root

numbers.

What can we learn from this?
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A first theorem!

Theorem (Zubrilina, arXiv:2310.07681)

Fix k ∈ 2Z>0. Then there is a continuous function Mk : R>0 → R such

that, for any fixed y ∈ R>0 and δ ∈ (0, 1),

lim
p prime
p→∞

∑
N∈[p/y ,p/y+pδ ]∩Z

N squarefree

∑
f∈Hk (N) ϵf af (p)

√
p∑

N∈[p/y ,p/y+pδ ]∩Z
N squarefree

∑
f∈Hk (N) 1

= Mk(y).

M2 versus numerics for |N − 218| < 210 and p < 219



M2 versus numerics for |N − 218| < 210 and p < 219

dyadic convolution of M2 versus numerics for N ∈ [214, 215] and p < 216



Last July, ICERM held a workshop on murmurations. Sarnak asked

whether there are murmuration phenomena for families with varying

Archimedean parameters (such as Maass forms with increasing

eigenvalue, or modular forms of fixed level as the weight k → ∞).

For both of these, we would need to use the analytic conductor instead of

the standard conductor: the analytic conductor of a modular form of

weight k and fixed level behaves like N (k) =
(
k−1
4π

)2
+ O(1), and the

analytic conductor of a Maass form with eigenvalue λ = 1
4 + R2 behaves

like N (R) = R2

4π2 + O(1). These are both quadratic in the Archimedean

parameter, which leads to different behavior.



Andrei Seymour-Howell and I have been rigorously computing Maass

forms. What does this data look like?
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When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

In collaboration with Min Lee, Bober, and Andy Booker, we began to

look at experimental plots. We observed that normalizing points by

p/N (k) is complicated to reason about — so we collect points into small

bins (corresponding to small local averages in p).



When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

averages of ap (f )
√

p for f of weight k ∈ [50, 250] and fixed ϵf (blue = +1, orange = −1), collated by p/N.



When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

averages of ap (f )
√

p for f of weight k ∈ [250, 600] and fixed ϵf (blue = +1, orange = −1), collated by p/N.



When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

averages of ap (f )
√

p for f of weight k ∈ [600, 1200] and fixed ϵf (blue = +1, orange = −1), collated by p/N.



When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

averages of ap (f )
√

p for f of weight k ∈ [1200, 2400] and fixed ϵf (blue = +1, orange = −1), collated by p/N.



When generating data for classical modular forms in the LMFDB,

Jonathan Bober implemented an (extremely fast) trace formula that can

produce data for fixed level, rising weight modular forms.

averages of ap (f )
√

p for f of weight k ∈ [2400, 3300] and fixed ϵf (blue = +1, orange = −1), collated by p/N.



It turns out that the murmurations tend towards a sequence of dirac

delta functions. In arXiv:2310.07746, we prove the following.

Theorem (Bober, Booker, Lee, Lowry-Duda)

Assume GRH. Fix B ⊂ R>0 compact with |B| > 0. Let K ,H ∈ R>0

with K
5
6+ϵ < H < K 1−ϵ. Set N to be the analytic conductor in HK (1).

Then as K → ∞,∑
p/N∈B log p

∑
k≡2δ mod 4
|k−K |≤H

∑
f∈Hk

ap(f )∑
p/N∈B log p

∑
k≡2δ mod 4
|k−K |≤H

∑
f∈Hk

1
=

(−1)δ√
N

(
ν(B)

|B|
+ oB,ϵ(1)

)
,

For an explicit measure ν(B), which looks more complicated to

understand than it actually is.



It turns out that the murmurations tend towards a sequence of dirac

delta functions. In arXiv:2310.07746, we prove the following.

Theorem (Bober, Booker, Lee, Lowry-Duda)

Assume GRH. Fix B ⊂ R>0 compact with |B| > 0. Let K ,H ∈ R>0

with K
5
6+ϵ < H < K 1−ϵ. Set N to be the analytic conductor in HK (1).

Then as K → ∞,∑
p/N∈B log p

∑
k≡2δ mod 4
|k−K |≤H

∑
f∈Hk

ap(f )∑
p/N∈B log p

∑
k≡2δ mod 4
|k−K |≤H

∑
f∈Hk

1
=

(−1)δ√
N

(
ν(B)

|B|
+ oB,ϵ(1)

)
,

where ν(B) =
1

ζ(2)

∑∗

a,q∈Z>0

gcd(a,q)=1

(a/q)−2∈B

µ(q)2

φ(q)2σ(q)

(q
a

)3

= 1
2

∞∑
t=−∞

∏
p∤t

p2 − p − 1

p2 − p
·
∫
B

cos

(
2πt
√
y

)
dy .



We convinced ourselves that we would prove this in July of last year, and

it was just a matter of ironing out details. But it turns out that we missed

something that perhaps should have jumped out at us from numerics.



We convinced ourselves that we would prove this in July of last year, and

it was just a matter of ironing out details. But it turns out that we missed

something that perhaps should have jumped out at us from numerics.



Surprise!

These murmurations are exactly the same.

Theorem (Booker, Lee, Lowry-Duda, Seymour-Howell, Zubrilina)

Assume GRH. Fix B ⊂ R>0 compact with |B| > 0. Let R,H ∈ R>0

with R
5
6+ϵ < H < R1−ϵ. Set N to be the analytic conductor for Maass

forms of level 1 with eigenvalue parameter R. Then as R → ∞,∑
p/N∈B log p

∑
|rj−R|≤H ϵf ap(f )∑

p/N∈B log p
∑

|rj−R|≤H 1
=

1√
N

(
ν(B)

|B|
+ oB,ϵ(1)

)
,

where ν(B) is exactly as above.



Aside on ML and Number Theory

All the work I describe today was inspired by machine learning.

I’ve been working a lot recently on trying to get real, actual mathematics

from machine learning. I think it’s worth discussing further.

1. percent correct isn’t percent understanding (µ(n))

2. pattern recognition is amazing (clustering)

3. one-sided information oracle (a(p) and signs)

4. what’s next?



Sketch of proof ideas

Superficially, the proofs here and in Zubrilina’s work are all similar: begin

with an explicit trace formula and try to make sense through repeated

averaging.

But the trace formulas (and whether they use holomorphic or

nonholomorphic objects) are very different.

We used an Eichler–Selberg trace formula to prove the holomorpic

modular form case as the weights k → ∞, and a variant of the Selberg

trace formula due to Strömbergsson to prove the Maass form case.



For fixed level, rising weight holomorphic modular forms, the

Eichler–Selberg trace formula shows

∑
f∈Hk

ap(f ) ≈
(−1)

k
2

π

∑
t∈Z

t2<4p

cos
(
(k − 1)ϕt,p

)
L(1, ψt2−4p),

where ϕt,p = arcsin
(

t
2
√
p

)
and ψ is a Dirichlet character.



We average over primes p and weights k (in a particular congruence class

2δ mod 4), giving sums of the shape∑
p

∑
k

∑
f∈Sk

ap(f ) ≈
(−1)δ

π

∑
p

∑
t∈Z

t2<4p

∑
k

cos
(
(k − 1)ϕt,p

)
L(1, ψt2−4p).

Recalling that ϕt,p = arcsin
(

t
2
√
p

)
∈ (−π/2, π/2) and that k is summed

over a fixed congruence class mod 4, we observe that the sum over k

strongly concentrates over values of ϕt,p that are close to either 0 or ±π
2 .

But as there aren’t many integers t with t2 near 4p, the mass of the sum

actually concentrates around ϕt,p ≈ 0.

In particular, we can focus on t with |t| < T for some (smaller)

parameter T , and replace ϕt,p by a linear approximation. We are led to

∑
p

∑
k

∑
f∈Sk

ap(f ) ≈
(−1)δ

π

∑
k

∑
p

∑
t∈Z
|t|<T

cos

(
(k − 1)t

2
√
p

)
L(1, ψt2−4p).



∑
p

∑
k

∑
f∈Sk

ap(f ) ≈
(−1)δ

π

∑
k

∑
p

∑
t∈Z
|t|<T

cos

(
(k − 1)t

2
√
p

)
L(1, ψt2−4p).

To handle the L-function and sum over primes, we show that L(1, ψt2−4p)

can be understood through studying the local average L(1, ψt), where

ψt(m) =
1

φ(m2)

∑
n mod m2

(n,m)=1

ψt2−4n(m).

In particular, for sufficiently nice Φ∑
p∈[A,B]

L(1, ψt2−4p)Φ(p) log p ≈ L(1, ψt)

∫ B

A

Φ(u) du.

This lets us transform the sum over primes into an integral, which (after

a change of variables) shows that∑
p

∑
k

∑
f∈Sk

ap(f ) ≈
(−1)δ

π

∑
k

(
k − 1

4π

)2 ∫ ∑
t

L(1, ψt) cos(2παt)
dα

α3
.



∑
p

∑
k

∑
f∈Sk

ap(f ) ≈
(−1)δ

π

∑
k

(
k − 1

4π

)2 ∫ ∑
t

L(1, ψt) cos(2παt)
dα

α3
.

Main terms come from angles α ≈ a
q for rational numbers a

q — to

quantify this, we use the circle method.

The arithmetic content of the main terms come from the arithmetic

behavior of L(1, ψt) cos(2παt).



For Maass forms, there is a particularly annoying initial difference: we

require an analytic test function for the Selberg trace formula. It thus

cannot be compactly supported.

Nonetheless, the main contribution again comes from hyperbolic terms in

the trace formula, corresponding to a sum∑
t

L(1, ψt2+4p)Φ(·),

where the test function Φ(·) is more complicated but which also

concentrates the sum around |t| ≤ T .

Although all the error handling is different (and the presence of a

noncompact weight complicates every step), the computation of the main

term is almost identical.



Thank you very much.

Please note that these slides are (or will soon

be) available on my website

(davidlowryduda.com).


