
TECHNICAL REPORT ON MACHINE LEARNING EXPERIMENTS
FOR THE MÖBIUS FUNCTION

DAVID LOWRY-DUDA
LAST UPDATED: 2024.10.19

Abstract. Last week, I was at the Mathematics and Machine Learning pro-
gram at Harvard’s Center of Mathematical Sciences and Applications. The
underlying topic was on number theory and I’ve been studying various num-
ber theoretic problems from a machine learning perspective.

This is a technical report, including details related to actually running
the code and analyzing the results.

Contents

1. Introduction 1
2. Int2Int 2
3. Representation 6
4. Guessing µ(n) from n mod p without using CRT 6
5. Extended remark on the utility of ML for pure mathematics 14
Appendix A. Parsing Logs 15
References 24

1. Introduction

I’ve been computing several experiments related to estimating the Mobius
function µ(n). Previous machine learning experiments on studying µ(n) have
used neural networks or classifiers. Francois Charton made an integer se-
quence to integer sequence transformer-based translator, [Int2Int] (available
at Int2Int), and I thought it would be fun to see if this works any different.

Initially, I sought to get Int2Int to work. I describe aspects of that and how
to run it in various ways here.

I’m splitting my description into two parts: a general report [DLD-General]
and a technical report. This is the technical report. This includes many details
related to actually running and analyzing the code.

This work was supported by the Simons Collaboration in Arithmetic Geometry, Number
Theory, and Computation via the Simons Foundation grant 546235.

1

https://cmsa.fas.harvard.edu/event/mml2024/
https://github.com/f-charton/Int2Int/

2 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

2. Int2Int

Int2Int can be found at Int2Int. It is possible to run Int2Int using a CPU,
but it’s much slower and probably not worth trying.

Francois and Edgar Costa (and to a lesser extent, me) have tried ot make
Int2Int as self-contained as possible. It’s certainly easier now than it was
a few weeks ago — it might be possible for the Reader to experiment with
https://github.com/f-charton/Int2Int/ using only the README there.

2.1. Training from data files. By default, Int2Int expects to be able to gen-
erate valid inputs and outputs on the fly. We wanted to use and experiment
with data that is nontrivial to compute (such as the Möbius function or data
associated to elliptic curves). For that, we’ve added the ability to train from
data files.

It would be fair to say that running Int2Int with default settings
is so easy that the hardest part to get up and running is creating
the data files. And this is only as hard as the data is to generate
and store.

To train from data files, the file needs ot have a particular format. Recall
that Int2Int fundamentall reads and outputs sequences of integers. Each inte-
ger is encoded as s ad ... a0, where s is either + or - and is the sign, and ad

through a0 are the digits in a given base (which defaults to 1000). For example,
the number 12345 is encoded as + 12 345.

An array of n integers is encoded as Vn z1 ... zn, where the n in Vn is
the actual number. For example, the array (1,1234,1234567) is encoded as
V3 + 1 + 1 234 + 1 234 567.

A datafile should have the input given as an array of the appropriate length,
followed by a tab character \t, followed by the output. As an even more tech-
nical note, the output can be specified by a range of values instead of as an
integer or integer array; this is useful with µ(n) since it can only take 3 values.
This has to do with the symbol table that Int2Int uses, and the fact that it uses
cross-entropy loss to measure performance.

A complete datafile could be the following.
1 V5 + 1 + 2 + 1 + 3 + 4 + 5\t+ 1

2 V5 + 0 + 2 + 1 + 3 + 1 + 5\t+ 0

This data file has the spec int[5]:int. If we wanted more than a single
int as output, we would have to use Vn appropriately. There is an additional
datatype called range (with python-like semantics). In practice, if we know
the output is a single constrained integer, there is a minor boost from using
range instead of int.

2.2. Datafile Generation Scripts. I generated most of my datafiles using a
script that closely looked like the following. This is a sagemath script. That
is, it’s mostly python, but it has inbuilt commands primes and moebius that I
take for granted.

https://github.com/f-charton/Int2Int/
https://en.wikipedia.org/wiki/Cross-entropy

TECHNICAL REPORT ON ML AND µ 3

1 primes_100 = list(primes(542)) # generate list of 100 primes

2

3 def encode_integer(val, base=1000, digit_sep=" "):

4 if val == 0:

5 return '+ 0'

6 sgn = '+' if val >= 0 else '-'

7 val = abs(val)

8 r = []

9 while val > 0:

10 r.append(str(val % base))

11 val = val//base

12 r.append(sgn)

13 r.reverse()

14 return digit_sep.join(r)

15

16 # Each line has an input, a tab, and an output.

17 def make_line(n):

18 return make_input(n) + "\t" + make_output(n) + "\n"

19

20 def make_input(n):

21 ret = []

22 count = len(primes_100)

23 ret.append(f"V{2*count}")

24 for p in primes_100:

25 ret.append(encode_integer(n % p)) # feed in n mod p

26 ret.append(encode_integer(p)) # followed by p

27 return ' '.join(ret)

28

29 def make_output(n):

30 return str(moebius(n))

What’s left is to determine what family of n to input. For performing regression-
like tasks, Francois noted that using a log-distribution tends to work best. This
is more like a classification task as the output is one of 0, −1, or 1. Thus I gener-
ically uniformly sampled integers n up to some large bound like 1013 without
repetition. To do this, I generate random integers in the range and check to
make sure that I don’t generate the same one twice.

1 import random

2

3 seen = set()

4 with open("mu_modp_and_p.txt", "w", encoding="utf8") as

outfile:,→
5 while len(seen) < 10**7:

6 n = random.randint(2, 10**13)

7 if n in seen:

4 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

8 continue

9 seen.add(n)

10 outfile.write(make_line(n))

Note that this creates 107 lines, each having approximately 200 ·3 ∼ 1000
characters. The resulting file will be approximately 10GB. Adjust the param-
eters appropriately!

The slow part is computing µ(n) for random integers. Generating random
numbers (including the 10−6 chance of hitting a previously seen number) and
writing to the file is fast; computing µ(n) for a random 12 digit number can be
slow-ish.

But in practice, the actual slow part is training the resulting ML model. I
didn’t work to optimize generation of µ at all.

I note that a sieve could generate all the Möbius values up to N at once.
Then you could sample from these values in whatever way makes sense. Some-
thing along the following lines would work (and would remove the sagemath

dependency).
1 def primes_up_to(X):

2 """

3 A basic implementation of Eratosthenes.

4 """

5 arr = [True] * (X + 1)

6 arr[0] = arr[1] = False

7 primes = []

8 for p in range(X + 1):

9 if arr[p]: # is prime

10 primes.append(p)

11 for j in range(p*p, X + 1, p):

12 arr[j] = False

13 return primes

14

15

16 def mobius_up_to(X):

17 "Eratosthenes-like"

18 arr = [1] * (X + 1)

19 arr[0] = 0

20 ps = primes_up_to(X)

21 for p in ps:

22 for j in range(p, X + 1, p):

23 arr[j] *= -1

24 for j in range(p*p, X + 1, p*p):

25 arr[j] = 0

26 return arr

2.3. Making testing and training data. I then make testing and training
data.

TECHNICAL REPORT ON ML AND µ 5

1 import os

2 def shuffle_and_create(fname, ntrain=1900000, ntest=100000):

3 "Shuffle and create test and training files"

4 if not fname.endswith(".txt"):

5 raise ValueError("Incorrect filename assumption.")

6 name = fname[:-4] # remove ".txt"

7 print("shuffling...")

8 os.system(f"shuf {name}.txt > {name}.shuf.txt")

9 print("making training data...")

10 os.system(f"head -n {ntrain} {name}.shuf.txt >

{name}.txt.train"),→
11 print("making testing data...")

12 os.system(f"tail -n {ntest} {name}.shuf.txt >

{name}.txt.test"),→
13 print("done!")

2.4. Running Int2Int. It’s now time to actually run the code. It’s necessary
to have a python with pytorch installed (not surprisingly) and to have Int2Int
somewhere. But a generic run would look like

1 python ../Int2Int/train.py

2 --num_workers 0

3 --dump_path ~/scratch

4 --exp_name dld_mu_modp_and_p_sqfree

5 --exp_id 1

6 --train_data ./mu_modp_and_p_sqfree.txt.train

7 --eval_data ./mu_modp_and_p_sqfree.txt.test

8 --local_gpu 1

9 --epoch_size 250000

10 --operation data

11 --data_types "int[200]:range(-1,2)"

12 --optimizer "adam,lr=0.00025"

This was one of the commands I used when using (n mod p, p) for the first
100 primes (giving 200 inputs total) and output just µ(n) (one int in a pre-
scribed range).

Most of these are straightforward. The --optimizer command is decep-
tively useful, largely because changing the initial learning rate can have large
impacts on the overall performance.

When run in this way, it’s almost certain that you’ll need to manually stop
the experiment before it has a complete run. This is because the default num-
ber of epochs to train through is very large. In practice, it’s a good idea to
sometimes look at the outputs or parse the logs and to see how the behavior is
going.

2.5. Log parsing and graph creation. For log parsing and graph creation,
I used code largely written by someone else (maybe Edgar Costa). This is a

6 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

pile of code, but it’s just parsing the pickled logs from a set of experiments.
Log writing and parsing always takes piles of not-very-hard code. This is no
exception.

The relevant code is in the appendix.

3. Representation

I thought using residues mod several primes was a good strategy. Other
experiments have shown1 that the base in which numbers are expressed can
be very important.

Something like base 100 or base 1000 would allow for almost immediate
recognition that µ(n) = 0 if 25 | n or if 4 | n, as these congruence classes are
fixed. I’m more interested in what other sorts of mathematical structures the
machine can learn.

In this case, I represented each number in base 1000, but almost never
needed to use any number larger than 1000 (as the 100th prime is 541). The
Chinese remainder theorem shows that this allows representation for every
integer up to approximately 10219.67. This is large enough to be interesting.

1 # pure python - uses primes_up_to defined above

2 import math

3 from functools import reduce

4

5 primes_100 = primes_up_to(1000)[:100]

6 print(primes_100[-1])

7 # 541

8

9 modulus = reduce(lambda x, y: x*y, primes_100, 1)

10 print(modulus)

11 # [...enormous...]

12 print(math.log(modulus)/math.log(10))

13 # 219.67...

If n < 10219.67, then n is uniquely determined by its residues mod p for the
first 100 primes p.

4. Guessing µ(n) from n mod p without using CRT

One of the questions that came up was the following mathematical (not
programmatic) question.

How would you guess whether n is squarefree or not given n mod
p for lots of primes p?

1See Learning the greatest common divisor: explaining transformer predictions by François
Charton. François also extracted Int2Int from the models used in this paper, more or less.
Thank you François.

TECHNICAL REPORT ON ML AND µ 7

One way would be to perform the Chinese remainder theorem, reconstruct
n, and then actually check. There is no known polynomial-time algorithm to
check if an integer is squarefree, so this approach is generically slow.

The “default” algorithm would be to note that about 60.79 percent of num-
bers are squarefree. So guessing squarefree all the time would be right just
over 60 percent of the time. I want any algorithm that does better.

The Dirichlet series for squarefree numbers that are divisible by a fixed
prime q is

1
qs

∏
p

p ̸=q

(
1+ 1

ps

)
= 1

qs
(1−1/qs)
(1−1/q2s)

ζ(s)
ζ(2s)

, (1)

and the series for squarefree numbers that aren’t divisible by a fixed prime q is
the same, but without q−s. Thus the percentage of integers that are squarefree
and divisible by q or not divisible by q are, respectively,

1
q+1

6
π2 and

q
q+1

6
π2 . (2)

A simple application of conditional probability shows that

P(sqfree|q-even)= P(sqfree and q-even)
P(q-even)

= q
q+1

6
π2

P(sqfree|q-odd)= P(sqfree and q-odd)
P(q-odd)

= q2

q2 −1
6
π2 .

I use the adhoc shorthand q-even to mean divisible by q, and q-odd to mean
not divisible by q.

Let’s quickly experimentally verify this. We make squarefree numbers with
yet another Eratosthenes-type sieve.

1 def squarefree_up_to(X):

2 """

3 Eratosthenes-like.

4 """

5 arr = [True] * (X + 1)

6 arr[0] = False

7 ps = primes_up_to(int(X**.5) + 1)

8 for p in ps:

9 for j in range(p*p, X + 1, p*p):

10 arr[j] = False

11 ret = []

12 for i in range(X + 1):

13 if arr[i]:

14 ret.append(i)

15 return ret

16

17

18 sfree = squarefree_up_to(10_000_000)

8 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

19 print(len(sfree)/10_000_000)

20 # 0.6079291

21

22 import math

23 print(6./math.pi**2)

24 # 0.6079271018540267

As an aside, I note that this converges very quickly. Look at how close that is!
One useless application of the Riemann Hypothesis is that is would guarantee
how quickly the density of the number of squarefree numbers up to X would
converge to 6/π2.

1 def ratio_sqfree_with(filterfunc):

2 return sum(1 for n in sfree if filterfunc(n))/len(sfree)

3

4 def is_even(x):

5 return 1 if x % 2 == 0 else 0

6 def is_odd(x):

7 return 1 if x % 2 == 1 else 0

8

9 # even and sqfree

10 ratio_sqfree_with(is_even)

11 # 0.3333309756022536

12

13 # odd and sqfree

14 ratio_sqfree_with(is_odd)

15 # 0.6666690243977463

16

17 def is_3even(x):

18 return 1 if x % 3 == 0 else 0

19 def is_3odd(x):

20 return not is_3even(x)

21

22 ratio_sqfree_with(is_3even)

23 # 0.24999839619455624

24

25 ratio_sqfree_with(is_3odd)

26 # 0.7500016038054438

This agrees with the claim above that 1/(q+1) of squarefree numbers are
divisible by the prime q, and q/(q+1) are not. The converse probabilities follow
from basic probability, but to make sure:

1 sqfree_set = set(sfree) # for quick inclusion checking

2

3 def prob_sqfree_given(filterfunc):

4 sqfree_count = 0

5 total_count = 0

TECHNICAL REPORT ON ML AND µ 9

6 for n in (x for x in range(10_000_000) if filterfunc(x)):

7 total_count += 1

8 if n in sqfree_set:

9 sqfree_count += 1

10 if total_count == 0:

11 return 0.0

12 return sqfree_count / total_count

13

14 # P(sqfree | divis by 2)

15 prob_sqfree_given(is_even)

16 # 0.4052832

17

18 # P(sqfree | not divis by 2)

19 prob_sqfree_given(is_odd)

20 # 0.810575

21

22 # P(sqfree | divis by 3)

23 prob_sqfree_given(is_3even)

24 # 0.45594380881123825

25 3/4 * 6/math.pi**2

26 # 0.45594532639052

27

28 # P(sqfree | not divis by 3)

29 prob_sqfree_given(is_3odd)

30 # 0.6839217683921769

31 9/8 * 6/math.pi**2

32 # 0.68391798958578

These are very close to the theoretical computations above — again, it turns
out that convergence is very quick.

4.1. Compound Probabilities. We’ll compute joint probabilities theoretically
in a moment. But we’ll also experimentally find them.

Let’s look at the probability using the small-prime strategy for the primes
2,3,5: if n is divisible by one of these, guess that n is not squarefree; otherwise
guess that n is squarefree.

1 def not_divis_by_small_prime(n):

2 for p in (2, 3, 5):

3 if n % p == 0:

4 return False

5 return True

6

7 A = prob_sqfree_given(not_divis_by_small_prime)

8 print(A)

9 # 0.9498902374725594

10

10 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

11 def prob_notsqfree_given(filterfunc):

12 notsqfree_count = 0

13 total_count = 0

14 for n in (x for x in range(10_000_000) if filterfunc(x)):

15 total_count += 1

16 if n not in sqfree_set:

17 notsqfree_count += 1

18 if total_count == 0:

19 return 0

20 return notsqfree_count / total_count

21

22

23 def divis_by_small_prime(n):

24 return not not_divis_by_small_prime(n)

25

26 B = prob_notsqfree_given(divis_by_small_prime)

27 print(B)

28 # 0.5164203621436034

The density of numbers not divisible by 2,3, or 5 is (1−1/2)(1−1/3)(1−1/5)≈
0.2666. Thus 0.2666 of the time, n isn’t divisible by 2 or 3 or 5 and we would
guess that n is squarefree; this is correct about 0.9498 of the time. And the
0.7333 of the time when n is divisible by at least one of 2 or 3 or 5, we guess
that n is not squarefree; this is correct 0.5164 of the time.

In total, we expect that this strategy is correct with density

0.2666 ·0.9498+0.7333 ·0.5164≈ 0.6318.

Let’s check:
1 not_divis_prob = (1 - 1/2)*(1 - 1/3)*(1 - 1/5)

2 corr = not_divis_prob * A + (1 - not_divis_prob) * B

3 print(corr)

4 # 0.6320123288979917

If you look, you’ll see that this does better than the naive guess (always guess
squarefree) but is worse than guessing based only on mod 2 data. This is be-
cause we’re ignoring all of the various cross-correlations. Clearly incorporating
cross-correlations can never do worse than only using the mod 2 data.

Suppose we look instead at all the probabilities for all 2ℓ possibilities of n
being divisible or not by the first ℓ primes. Here, I use the first 4 primes, and
the strategy is simple: compute whether it is more likely for n to be squarefree
or not given each divisibility pattern, and guess that one.

1 def binary_to_prime_sets(n, length=4):

2 assert length <= 25

3 b = bin(n)[2:]

4 b = "0" * (length - len(b)) + b

5 is_divis = []

TECHNICAL REPORT ON ML AND µ 11

6 not_divis = []

7 ps = primes_up_to(100)[:length]

8 for l, p in zip(b, ps):

9 if l == "1":

10 is_divis.append(p)

11 else:

12 not_divis.append(p)

13 return is_divis, not_divis

14

15 def divis_rules(is_divis, not_divis):

16 def filterfunc(n):

17 for p in is_divis:

18 if n % p != 0:

19 return False

20 for p in not_divis:

21 if n % p == 0:

22 return False

23 return True

24 return filterfunc

25

26 def density_given(is_divis, not_divis):

27 filterfunc = divis_rules(is_divis, not_divis)

28 count = 0

29 for n in (x for x in range(10_000_000) if filterfunc(x)):

30 count += 1

31 return count/10_000_000

32

33 correct = 0

34 exp = 4

35 for n in range(2**exp):

36 is_divis, not_divis = binary_to_prime_sets(n, length=exp)

37 ff = divis_rules(is_divis, not_divis)

38 psqfree = prob_sqfree_given(ff)

39 density = density_given(is_divis, not_divis)

40 prob = max(psqfree, 1 - psqfree)

41 correct += density * prob

42 print(

43 is_divis, not_divis, n,

44 psqfree, density, prob, density * prob, correct

45) # my own diagnostics

46 print(correct)

47 # 0.7031860000000001

Remarkably this almost no better than just 2 alone! Before performing this
computation, I had assumed that it would be notably better. Instead, it’s close

12 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

enough that it might actually be the same as using 2 alone, combined with
numerical imprecision.

With this set up, we can compute the theoretical probabilities instead of
using experimentally determined probabilities.

4.2. Actual computation. Let {p1, . . . , pN } and {q1, . . . , qD} denote two dis-
joint sets of primes. We want to compute the density of squarefree numbers
that are divisible by each of the pi and not divisible by any of the q j. Each
of these local conditions are independent; the overall density is the product of
the local densities as described in~(1) and~(2). That is, the density of integers
divisible by the pi and not divisible by the q j is∏

pi

(1
pi +1

)∏
q j

(q j

q j +1

) 6
π2 .

Recall the chain rule from probability, that says

P
(k⋂

i=1
E i

)
= P

(
E1|

k⋂
i=2

E i

)
= P

(
E1|

k⋂
i=2

E i

)
P

(k⋂
i=2

E i

)
,

(and which could chain further). I write P(sqfree, p1, p2, q̂1, q̂2) to mean the
probability that a number is squarefree, divisible by p1 and p2, and not divis-
ible by q1 or q2 (with obvious notational generalization). Then

P(sqfree|p1, . . . , pN , q̂1, . . . , q̂D)= P(sqfree, p1, . . . , pN , q̂1, . . . , q̂D)
P(p1, . . . , pN , q̂1, . . . , q̂D)

.

Divisibility by different primes are independent, so this simplifies to

P(sqfree|p1, . . . , pN , q̂1, . . . , q̂D)= P(sqfree, p1, . . . , pN , q̂1, . . . , q̂D)
P(p1) · · ·P(pN)P(q̂1) · · ·P(q̂D)

.

We also have that P(p)= 1/p and P(q̂)= (q−1)/q.
Altogether, we compute that

P(sqfree|p1, . . . , pN , q̂1, . . . , q̂D)=∏
pi

(pi

pi +1

)∏
q j

(q2
j

q2
j −1

) 6
π2 .

Note that this generalizes the previous probabilities and is generically straight-
forward.

Let’s quickly check by computing P(sqfree|2,3) and P(sqfree|2, 3̂):

P(sqfree|2,3)= 1
2

6
π2 ≈ 0.3039,

P(sqfree|2, 3̂)= 3
4

6
π2 ≈ 0.4559.

1 divis_by_2_and_3 = divis_rules([2, 3], [])

2 print(prob_sqfree_given(divis_by_2_and_3))

3 # 0.30395813920837217

4

5 divis_by_2_not_3 = divis_rules([2], [3])

TECHNICAL REPORT ON ML AND µ 13

6 print(prob_sqfree_given(divis_by_2_not_3))

7 # 0.45594574559457457

Let’s now compute the density of the following strategy being correct:
1. Fix a set of primes P.
2. For each partition of P into two disjoint sets of primes {pi} and {q j}:
3. Compute P(sqfree|p1, . . . , pN , q̂1, . . . , q̂D).
4. For integers satisfying this set of prime divisibility rules, guess ‘’square-

free” if this probability is larger than 0.5; otherwise guess ‘’not square-
free”.

1 def prob_sqfree_theoretical(ps, qs):

2 ret = 6/math.pi**2

3 for p in ps:

4 ret *= (p / (p + 1))

5 for q in qs:

6 ret *= (q*q/(q*q - 1))

7 return ret

8

9 prob_sqfree_theoretical([2], [3])

10 # 0.45594532639052

I assume we use the first ℓ primes and reuse some of the same logic as above.
1 def density_theoretical(ps, qs):

2 ret = 1

3 for p in ps:

4 ret *= (1/p)

5 for q in qs:

6 ret *= (q-1)/q

7 return ret

8

9 def strategy(ell):

10 correct = 0

11 for n in range(2**ell):

12 ps, qs = binary_to_prime_sets(n, length=ell)

13 psqfree = prob_sqfree_theoretical(ps, qs)

14 density = density_theoretical(ps, qs)

15 prob = max(psqfree, 1 - psqfree)

16 correct += density * prob

17 return correct

18

19 strategy(1)

20 # 0.7026423672846756

21

22 strategy(10)

23 # 0.7034137933079656

24

14 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

25 strategy(20)

26 # 0.7034211847385363

27

28 strategy(25)

29 # 0.7034221516869834

Computing this for anything much larger would be prohibitively computa-
tionally expensive. Without more sophisticated thinking, it seems we’ve hit a
wall. Presumably this continues to grow, but perhaps is strictly bounded.

I pose this as an open question. It’s not clear to me how hard it is to answer
it.

Question 1. What is the limiting behavior of this strategy? Can it be shown to
be less than 71 percent?

5. Extended remark on the utility of ML for pure mathematics

Machine learning operates as a block box. There may be many problems
where it can achieve impressive results, but it might give no clues as to how it
actually does its predictions.

But one place where it is useful is acting as a one-sided oracle to determine
whether the inputs are enough to correctly evaluate an output. For example,
if I wanted to determine if a particular set of inputs are sufficient to determine
some behavior, I might try to feed these inputs along with known outcomes
into a machine learning blackbox. If the ML soup acts with high accuracy
using only those inputs, it seems more likely that those variables are indeed
significant.

It’s “one-sided” because the model might simply fail to model the function
well. Failing to obtain high accuracy could reflect merely that the model wasn’t
strong enough, or there wasn’t enough data, or any of a variety of points of
failure that are independent of the underlying mathematical question.

And it’s an “oracle” because there are no explanations for the insight. We
can not ask for the workings behind the curtain.

With regard to the question above, I think I’ve tried such a variety of models
and structures and learning rates that I suspect that knowing n mod p for the
first 100 primes isn’t enough to guess µ(n)2 on random input n more than 75
percent of the time. And this belief is bolstered by the failure of the ML to do
better. (I’ve tried neural networks of various forms too, even though I haven’t
described those here).

But unfortunately that’s not the direction the oracle sees and I don’t believe
in the strength of ML enough to make a conjecture or to draw a line in the
sand.

TECHNICAL REPORT ON ML AND µ 15

Appendix A. Parsing Logs

1 # path and env name : THIS IS YOUR DUMP PATH

2 path = "~/scratch/"

3

4 # THE EXPERIMENTS YOU WANT TO PROBE AND THE ACCURACY INDICATOR

5 indicator = "valid_arithmetic"

6 xp_env=["dld_mu_modp_and_p_sqfree"]

7

8 # SET TO TRUE IF YOU USE BEAM SEARCH

9 has_beam=False

10

11 import os

12 import pickle

13 import matplotlib.pyplot as plt

14 import glob

15 import ast

16 from datetime import datetime

17 from tabulate import tabulate

18 import numpy as np

19 from operator import itemgetter

20

21 xp_id_filter=[]

22 xp_id_selector=[]

23 unwanted_args = ['dump_path']

24 var_args = set()

25 all_args = {}

26

27 # list experiments

28 xps = [(env, xp) for env in xp_env

29 for xp in os.listdir(path+'/'+env)

30 if (len(xp_id_selector)==0 or xp in xp_id_selector)

31 and (len(xp_id_filter)==0 or not xp in xp_id_filter)]

32 names = [path + env + '/' + xp for (env, xp) in xps]

33 print(len(names),"experiments found")

34

35 # read all args

36 pickled_xp = 0

37 for name in names:

38 pa = name+'/params.pkl'

39 if not os.path.exists(pa):

40 print("Unpickled experiment: ", name)

41 continue

42 pk = pickle.load(open(pa,'rb'))

43 all_args.update(pk.__dict__)

16 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

44 pickled_xp += 1

45 print(pickled_xp, "pickled experiments found")

46 print()

47

48 # find variable args

49 for name in names:

50 pa = name+'/params.pkl'

51 if not os.path.exists(pa):

52 continue

53 pk = pickle.load(open(pa,'rb'))

54 for key,value in all_args.items():

55 if key in pk.__dict__ and value == pk.__dict__[key]:

56 continue

57 if key not in unwanted_args:

58 var_args.add(key)

59

60 print("common args")

61 for key in all_args:

62 if key not in unwanted_args and key not in var_args:

63 print(key,"=", all_args[key])

64 print()

65 print(len(var_args)," variables params out of", len(all_args))

66 print(var_args)

67

68 def vars_from_env_xp(env, xp):

69 res = {}

70 pa = path+env+'/'+xp+'/params.pkl'

71 if not os.path.exists(pa):

72 print("pickle", pa, "not found")

73 return res

74 pk = pickle.load(open(pa,'rb'))

75 for key in var_args:

76 if key in pk.__dict__:

77 res[key] = pk.__dict__[key]

78 else:

79 res[key] = None

80 return res

81

82 def get_start_time(line):

83 parsed_line = line.split(" ")

84 dt = datetime.strptime(parsed_line[2]+'

'+parsed_line[3],"%m/%d/%y %H:%M:%S"),→
85 try:

86 idx = parsed_line.index("epoch")

87 curr_epoch = int(parsed_line[idx+1])

TECHNICAL REPORT ON ML AND µ 17

88 except ValueError:

89 curr_epoch = ""

90 return dt, curr_epoch

91

92 def read_xp(env, xp, indics, max_epoch=None):

93 res = {"env":env, "xp": xp, "stderr":False, "log":False,

"error":False},→
94 stderr_file = os.path.join(os.path.expanduser("~"),

'workdir/'+env+'/*/'+xp+'.stderr'),→
95 nb_stderr =len(glob.glob(stderr_file))

96 if nb_stderr > 1:

97 print("duplicate stderr", env, xp)

98 return res

99 for name in glob.glob(stderr_file):

100 with open(name, 'rt') as f:

101 res["stderr"]=True

102 errlines = []

103 cuda = False

104 terminated = False

105 forced = False

106 for line in f:

107 if line.find("RuntimeError:") >= 0:

108 errlines.append(line)

109 if line.find("CUDA out of memory") >= 0:

110 cuda = True

111 if line.find("Exited with exit code 1") >=0:

112 terminated = True

113

114 if line.find("Force Terminated") >=0:

115 forced = True

116 res["forced"] = forced

117

118 res["terminated"] = terminated

119 if len(errlines) > 0:

120 res["error"] = True

121 res["runtime_errors"] = errlines

122 res["oom"] = cuda

123 if not cuda:

124 print(stderr_file,"runtime error no oom")

125

126 pa = path+env+'/'+xp+'/train.log'

127 if not os.path.exists(pa):

128 return res

129 res["log"] = True

130 with open(pa, 'rt') as f:

18 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

131 series = []

132 train_loss=[]

133 for ind in indics:

134 series.append([])

135 best_val = -1.0

136 best_xel = 999999999.0

137 best_epoch = -1

138 epoch = -1

139 val = -1

140 ended = False

141 nanfound = False

142 res["curr_epoch"]=-1

143 res["train_time"]=0

144 res["eval_time"]=0

145 res["pred_nr"]=[]

146 nb_sig10 = 0

147 nb_sig15 = 0

148 counter = 0

149 counting = False

150 for line in f:

151 try:

152 if counting:

153 counter += 1

154 if line.find("Signal handler called with signal

10") >= 0:,→
155 nb_sig10 += 1

156 if line.find("Signal handler called with signal

15") >= 0:,→
157 nb_sig15 += 1

158 if line.find("Stopping criterion has been below

its best value for more than") >=0:,→
159 ended = True

160 elif line.find("============ Starting epoch")

>=0:,→
161 dt, curr_epoch = get_start_time(line)

162 if curr_epoch == max_epoch: break

163 res["start_time"] = dt

164 if curr_epoch >0 and curr_epoch ==

res["curr_epoch"]+1:,→
165 res["eval_time"] += (dt -

res["end_time"]).total_seconds(),→
166 res["curr_epoch"] = curr_epoch

167 elif line.find("============ End of epoch")

>=0:,→

TECHNICAL REPORT ON ML AND µ 19

168 dt, curr_epoch = get_start_time(line)

169 if curr_epoch != res["curr_epoch"]:

170 print("epoch mismatch",

curr_epoch,"in", env,",", xp),→
171 else:

172 res["end_time"] = dt

173 res["train_time"] +=

(dt-res["start_time"]).total_seconds(),→
174 elif line.find("- model LR:") >=0:

175 loss = line.split(" ")[-5].strip()

176 train_loss.append(None if loss == 'nan'

else float(loss)),→
177 elif line.find("- LR:") >=0:

178 loss = line.split(" ")[-4].strip()

179 if loss == "predictions.":

180 print(line)

181 else:

182 train_loss.append(None if loss == 'nan'

else float(loss)),→
183 elif line.find('- test predicted pairs') >=0:

184 counter = 0

185 counting = True

186 else:

187 pos = line.find('__log__:')

188 if pos >=0:

189 counting = False

190 res['pred_nr'].append(counter/100.0)

191 if line[pos+8:].find(': NaN,') >= 0:

192 nanfound = True

193 line = line.replace(': NaN,',':

-1.0,'),→
194 dic = ast.literal_eval(line[pos+8:])

195 epoch = dic["epoch"]

196 if not indicator+"_"+indics[0] in dic:

197 continue

198 if not indicator+"_"+indics[1] in dic:

199 continue

200 val = dic[indicator+"_"+indics[0]]

201 xel = dic[indicator+"_"+indics[1]]

202 if xel < best_xel:

203 best_xel= xel

204 if val > best_val:

205 best_val = val

206 best_epoch = epoch

20 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

207 res["best_dic"] = dic

208 for i, indic in enumerate(indics):

209 if indicator+"_"+indic in dic:

210

series[i].append(dic[indicator+"_"+indic]),→
211

212 except Exception as e:

213 print(e, "exception in", env, xp)

214 continue

215 except:

216 print(line)

217 continue

218 res["nans"] = nanfound

219 res["ended"] = (ended or (nb_sig15 > nb_sig10))

220 res["last_epoch"] = epoch

221 res["last_acc"] = "{:.2f}".format(val)

222 res["best_epoch"] = best_epoch

223 res["best_acc"] = float("{:.2f}".format(best_val))

224 res["best_xeloss"] = "{:.2f}".format(best_xel)

225 res["train_loss"]=train_loss

226 res["avg_d"] = np.median(res['pred_nr'])

227 res["last_d"] = res['pred_nr'][-1] if

len(res['pred_nr']) > 0 else -1,→
228 if epoch >=0:

229 res["train_time"] /= (epoch+1)

230 res["eval_time"] /= (epoch+1)

231 res["train_time"] = int(res["train_time"]+0.5)

232 res["eval_time"] = int(res["eval_time"]+0.5)

233

234 for i,indic in enumerate(indics):

235 res["last_"+indic] = "{:.2f}".format(series[i][-1])

if len(series[i])>0 else '0',→
236 res["best_"+indic] =

"{:.2f}".format(max(series[i])) if

len(series[i])>0 else '0'

,→
,→

237 res[indic] = series[i]

238 if len(series[i])!= epoch + 1:

239 print("mismatch in nr of epochs",env, xp,

epoch+1, len(series[i]), indic),→
240 return res

241

242 data = []

243 indics = ["beam_acc" if has_beam is True else "acc","xe_loss"]

TECHNICAL REPORT ON ML AND µ 21

244 indics.extend(["correct", "perfect", "beam_acc_d1",

"beam_acc_d2",,→
245 "beam_acc_nb", "additional_1","additional_2","additional_3"])

246

247 for (env, xp) in xps:

248 res = read_xp(env, xp, indics, None) # USE THE LAST

PARAMETER IF YOU WANT TO LIMIT READ TO N EPOCHS,→
249 res.update(vars_from_env_xp(env, xp))

250 data.append(res)

251

252 print(len(data), "experiments read")

253 print(len([d for d in data if d["stderr"] is False]),"stderr

not found"),→
254 print(len([d for d in data if d["error"] is True]),"runtime

errors"),→
255 print(len([d for d in data if "oom" in d and d["oom"] is

True]),"oom errors"),→
256 print(len([d for d in data if "terminated" in d and

d["terminated"] is True]),"exit code 1"),→
257 print(len([d for d in data if "forced" in d and d["forced"] is

True]),"Force Terminated"),→
258 print(len([d for d in data if "last_epoch" in d and

d["last_epoch"] >= 0]),"started XP"),→
259 print(len([d for d in data if "ended" in d and d["ended"] is

True]),"ended XP"),→
260 print(len([d for d in data if "best_acc" in d and

float(d["best_acc"]) > 0.0]),"began predicting"),→

And to make some graphs displaying various things, I would run the follow-
ing. Or rather, I would run the above and below in a notebook, so the graphs
display inline. (Otherwise I guess I would save them).

In practice, it was sufficient to look at the tail of the running log and to
extract learning rate failures and accuracies on test sets.

1 import numpy as np

2

3 def compose(f,g):

4 return lambda x : f(g(x))

5

6 def print_table(data, args, sort=False):

7 res = []

8 for d in data:

9 line = [d[v] if v in d else None for v in args]

10 res.append(line)

11 if sort:

22 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

12 res = sorted(res, key=compose(float,itemgetter(0)),

reverse=True),→
13 print(tabulate(res,headers=args,tablefmt="pretty"))

14

15 def speed_table(data, args, indic, sort=False, percent=95):

16 res = []

17 for d in data:

18 if indic in d:

19 line = [d[v] if v in d else None for v in args]

20 val= 10000

21 for i,v in enumerate(d[indic]):

22 if v >= percent and i < val:

23 val = i

24 line.insert(1,val)

25 res.append(line)

26 e= args.copy()

27 e.insert(1,'first epoch')

28 if sort:

29 res = sorted(res, key=compose(float,itemgetter(1)),

reverse=False),→
30 print(tabulate(res,headers=e,tablefmt="pretty"))

31

32 def training_curve(data, indic, beg=0, end=-1, maxval=None,

minval=None, export_to=""):,→
33 print(indic)

34 for d in data:

35 if indic in d:

36 if end == -1:

37 plt.plot(d[indic][beg:],linewidth=1)

38 else:

39 plt.plot(d[indic][beg:end],linewidth=1)

40 plt.ylim(minval,maxval)

41 plt.rcParams['figure.figsize'] = [10,10]

42 if export_to != '':

43 # print(export_to)

44 plt.savefig(export_to,bbox_inches="tight")

45 plt.show()

46

47 def filter_xp(xp, filt):

48 for f in filt:

49 if not f in xp:

50 return False

51 if not xp[f] in filt[f]:

52 return False

TECHNICAL REPORT ON ML AND µ 23

53 return True

54

55 def xp_stats(data, splits, best_arg, best_value):

56 res_dic = {}

57 nb = 0

58 for d in data:

59 if d[best_arg] < best_value: continue

60 nb += 1

61 for s in splits:

62 if not s in d: continue

63 lib=s+':'+str(d[s])

64 if lib in res_dic:

65 res_dic[lib] += 1

66 else:

67 res_dic[lib]=1

68 print()

69 print(f"{nb} experiments with accuracy over {best_value}")

70 for elem in sorted(res_dic):

71 print(elem,' : ',res_dic[elem])

72 print()

73

74 xp_filter ={}

75

76 # CHANGE THESE TO FILTER THE EXPERIMENTS

77 #xp_filter.update({"n_enc_layers":[4]})

78 #xp_filter.update({"enc_emb_dim":[512]})

79

80 fdata = [d for d in data if filter_xp(d, xp_filter) is True]

81

82 oomtab = [d for d in fdata if d["error"] is True]

83 print(f"CUDA out of memory ({len(oomtab)})")

84 print_table(oomtab, var_args)

85

86 forcetab = [d for d in fdata if 'forced' in d and d["forced"]

is True],→
87 print(f"Forced terminations ({len(forcetab)})")

88 print_table(forcetab, var_args)

89

90 unstartedtab = [d for d in fdata if "last_epoch" in d and

d["last_epoch"] < 0],→
91 print(f"Not started ({len(unstartedtab)})")

92 print_table(unstartedtab, var_args)

93

94 crypto = False

24 DAVID LOWRY-DUDA LAST UPDATED: 2024.10.19

95 runargs = ["best_acc", "best_epoch","best_xeloss", "ended",

"last_epoch",,→
96 "last_acc", "last_xe_loss","nans", "error", "train_time",

"eval_time"],→
97

98 #runargs.extend(["best_acc_d1" , "best_acc_d2"])

99 for v in var_args:

100 runargs.append(v)

101 runningtab = [d for d in fdata if "last_epoch" in d and

d["last_epoch"] >= 0],→
102 print(f"Running experiments ({len(runningtab)})")

103

104 #splits = ['n_enc_layers','dec_emb_dim','reload_size']

105 #xp_stats(fdata, splits, 'best_acc',90.0)

106 print()

107 print_table(runningtab, runargs, sort=True)

108

109 training_curve(fdata, "beam_acc" if has_beam is True else

"acc",0, -1, None, export_to = ""),→
110 training_curve(fdata, "perfect")

111 training_curve(fdata, "correct")

112

113 training_curve(fdata, "xe_loss", 0) #, None, 0.9* np.min([x for

d in fdata for x in d["xe_loss"] if x >0.0])),→
114 training_curve(fdata, "train_loss",0, -1, 2)

115 speed_table(runningtab, runargs, "beam_acc" if has_beam else

"acc", sort=True,percent=99),→
116 speed_table(runningtab, runargs, "beam_acc" if has_beam else

"acc", sort=True,percent=50),→
117 speed_table(runningtab, runargs, "beam_acc" if has_beam else

"acc", sort=True,percent=55),→
118 speed_table(runningtab, runargs, "beam_acc" if has_beam else

"acc", sort=True,percent=60),→

References

[DLD-General] David Lowry-Duda, General Report on Machine Learning Ex-
periments for the Möbius Function. 2024 October 21. (Cited on page 1)

[Int2Int] Int2Int Github Repository, https://github.com/f-charton/

Int2Int. Accesssed 2024 October 20.
(Cited on page 1)

https://github.com/f-charton/Int2Int
https://github.com/f-charton/Int2Int

	1. Introduction
	2. Int2Int
	3. Representation
	4. Guessing \mu(n) from n \bmod p without using CRT
	5. Extended remark on the utility of ML for pure mathematics
	Appendix A. Parsing Logs
	References

