NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS

DLD
LAST UPDATED 2024.10.14

Asstract. I worked with Eran Assaf to verify calculations in a paper we’re writing.
One of the things that we wanted to do was to help verify certain inner products and
residues.

I record some observations and experiments from our work.

CONTENTS

1. Computing Petersson Inner Products via Hidden Unfolding
2. Numerically estimating residues of L-functions

2.1. Direct estimation

2.2. Partial sums

2.3. Smoothed partial sums

2.4. Rigorous estimates

References

SO A DNDDN -

1. CompuTtiNG PETERSSON INNER PrODUCTS viA HipDEN UNFOLDING

Suppose we are given two weight 2 holomorphic cusp forms f and g on I'g¢(N) c
SL(2,7), and we want to compute the Petersson inner product

(M2, gyhi2) :ff F@g@y*duz). 1)
To(N\7#

Numerically computing the Petersson inner product in general is hard. PariGP has
some functionality here, but it can’t do everything.
One approach is to insert the weight 0 Eisenstein series

E(z,s):=) Im(yz)’.
YeT o \To(V)

Consider the inner product

(fgy",E@,5).
Writing f =Y a(n)q™ and g = Y b(n)q", the standard unfolding argument with Eisen-
stein series shows that

—47myys+k—1d_y _ I's+k-1) Z a(n)b(n)
n=1

p— k —_ _ SRS °
(fgy",E(z,9) = Z a(n)b(n)ﬁ € y (4m)s+h-1 nstk—1 "

n=1

This work was supported by the Simons Collaboration in Arithmetic Geometry, Number Theory, and
Computation via the Simons Foundation grant 546235.
1

NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS 2

The point is that the Eisenstein series has a pole at s = 1 with constant residue c.
Taking the residue shows that

T(k) oo 5 a(n)b(n)
(47.[)k s=1 =i ns+k—1 '

c(fy*?,8y*%) =Res(fgy* E(z,) =

Stated differently, computing (1) can be transformed into a problem about comput-
ing a residue of, essentially, a Rankin—Selberg L-function.

Remark 1. This construction is used by Rankin and Selberg in their work introducing
the L-function L(s, f x g). Note that L(s, f x g) should include a factor {(2s) (i.e. the
factor that completes E(z,s)) to make it behave well. A very similar construction with
a truncated Eisenstein series can be used to compute the residue ¢ (and see that it’s
the volume of the fundamental domain). See for example §1.6 of Bump [Bum98].

I also remark that if f and g are merely cusp forms (and not holomorphic cusp
forms), analogous work applies and the result is the same as long as the resulting
integral over y is understandable. For example, if f and g are Maass forms, then
similar results hold.

If f and g have different eigenvalues, then (f, g) = 0. If they have the same eigen-
value, then the resulting y integral is understandable (in the sense that one can look
it up in a table of integrals, or ask Mathematica).

2. NUMERICALLY ESTIMATING RESIDUES OF L-FUNCTIONS

We now look at the reduced problem. Given a Dirichlet series

D)=y a(n)

s
n=1

that is presumed to have meromorphic continuation to Res > 1 -6 for some § > 0 and
a simple pole at s =1, how can we numerically estimate the residue?

2.1. Direct estimation. We begin very naively.
In a neighborhood of 1, we have

r
D(s)=——+f(s) (2)
s—1
for a holomorphic function f. Thus
lim(s—1)D(s)=r,
s—1

the residue. If we can compute D(s) along a sequence of points tending to 1, then we
might just try to estimate this limit.

In practice, D(s) often converges absolutely for Res > 1, so we choose some small
€ >0 and try looking at

A+e-1)D(1+e)=€e¢-D(1+¢e)=r.

In practice, this behaves very badly. Let’s look at {(s) and use the obvious approxi-

mation
1 1
((1+€): Z n1+€ = Z 1+¢”

N n

n=1 ns<

© O N U R W N R

NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS 3

def zeta_approx(N, s):
return sum(1/(m**n(s)) for m in range(l, N + 1))

for epspower in (-2, -3, -4, -5, -6, -7):
eps = 10**xepspower

s =1+ eps

for npower in (3, 4, 5, 6):
N = 10**npower
print (f"N {N}, eps {eps}: {n(eps * zeta_approx(N, s))}")

This produces the following output:

=2=2=2=2 =2=2=2 =2 =2=2=2 =2 =2=2=2 =2 =2=2=2 =2

=2=2=2=2

1000, eps 1/100: 0.0725297980739927

10000, eps 1/100: 0.0937690500268027
100000, eps 1/100: 0.114528539813696
1000000, eps 1/100: 0.134815847783707

1000, eps 1/1000: 0.00746173653014950

10000, eps 1/1000: 0.00974539312390463
100000, eps 1/1000: 0.0120241987617199
1000000, eps 1/1000: 0.0142978033378315

1000, eps 1/10000: 0.000748309249198581

10000, eps 1/10000: 0.000978337305495686
100000, eps 1/10000: 0.00120835285756249
1000000, eps 1/10000: 0.00143831949805017

1000, eps 1/100000: 0.0000748523297425421

10000, eps 1/100000: 0.0000978718262077023
100000, eps 1/100000: 0.000120894841456149
1000000, eps 1/100000: 0.000143917731532429

1000, eps 1/1000000: 7.48544707142625e-6
10000, eps 1/1000000: 9.78756369334501e-6
100000, eps 1/1000000: 0.0000120900799291495
1000000, eps 1/1000000: 0.0000143926313619477

1000, eps 1/10000000: 7.48546848163299e-7
10000, eps 1/10000000: 9.78760180176266e-7
100000, eps 1/10000000: 1.20901395097692e-6
1000000, eps 1/10000000: 1.43927171867352e-6

We cannot usually expect better behavior than from {(s), and this looks abysmal!
Thinking more about it, we can understand some of this behavior. Clearly the coef-
ficients are all 1, and adding up N terms 1/n'*¢ will be at most N. It doesn’t make
sense to choose N and € such that Ne <« 1: the resulting residue approximation will
trivially tend to 0. This explains why the estimated residues are getting smaller as

l+e—1.

Of course, we know how to handle {(s) very well. But this illustrates the problem:
if understanding the behavior at the pole is hard, then understanding behavior near

NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS 4

the pole might also be hard. Similarly, if we don’t know how to understand the pole
purely abstractly, we presumably don’t have particularly good ways to understand the
meromorphic continuation. We're then trying to study the continuation in its worst
region of convergence.

This isn’t the way.

2.2. Partial sums. Let’s use a different strategy that avoids estimating D(s) directly.
Perron’s formula says that

1 X
Z a(n) = %f(U)D(s)?ds,

where o is large enough to be in the region of absolute convergence. We can be more
precise and give a truncated Perron formula (see for example §5.3 of Montgomery-
Vaughan [MV07]) of the form
1 o+iT XS

Z a(n)=— D(s)—ds+R(X,1)

n<X 211 Jo—iT s
for a boundable remainder R(X,¢). If |a(n)| < 1 (or indeed, even if this holds on aver-
age), the remainder is bounded by X log X/T'.

Remark 2. If|a(n)| < (logn)4, then the resulting remainder is bounded by X (log X)A+1/T'.
This probably isn’t written down anywhere, but it’s easy to show.

Using handwavy analysis, we should expect that we can shift o slightly left of 1,
picking up a pole at s =1 from D(s). The top and bottom contours are approximately
bounded by X logX/T. The left contour is annoying and really depends on our un-
derstanding of the meromorphic properties of D(s). Usually, it has some reasonable
growth property that means for some optimal choice of T, the residue dominates the
integral and remainder.

Then we (usually) have a relationship of the form

XS
)" a(n)=ResD(s)— +o(X) = Xr,
neX s=1 S

using r from the Laurent expansion (2). Thus

1
re— a(n),
with convergence depending on the actual bounds for the shifted integrals in Perron’s
analysis.

For {(s), this is of course perfect. The sum of the integers up to X is exactly X, so
this recovers the residue exactly. Nonetheless, sometimes convergence is slow — and
proving convergence requires some finicky analysis (very reminiscent of some proofs
of the prime number theorem).

2.3. Smoothed partial sums. Alternately, we can use more forgiving approxima-
tions than Perron. For example, we can use the Riesz mean (sometimes called the
Cesaro integral transform, and I don’t know the actual history),

1 ra+A)Xc)

_ A_ _— s TR RS
n;(a(n)(l n/X) 27”,];D(3)X T+ ATs) s.

N R N

NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS 5

The left hand side remains easy to compute: it’s a finite sum. The point is that if D(s)
is polynomially bounded in vertical strips, then one can choose A > 1 large enough
that the integral converges beautifully even after shifting to the left.

The residue theorem then gives

Y. a(n)(1-n/X)* =ResD(s)X°®

I'(1+A)X(s) f D($)X® I'(1+A)X(s)
n<X (o)

T(1+A+s) TA+A+s) °

+04(X7),

o rX
T 1+A
where we assume A is large enough to guarantee absolute convergence of the shifted
integral. (In practice, we take A > B + 1, where |D(¢’ +it)] < (1+ [£))B describes the
polynomial bound for D and 0 <o’ < 1).
For example, consider {(s) for convenience, we have

Y 1-n/X)?= %{ +0(X°),
n<X

as we know the trivial convexity estimate
1
[{(e+it) < (1+]t])2.

Explicitly computing, we find
tot = 0
X = 100000
for m in range(l, X + 1):

tot += n(1 - m/X)**2

residue = 3 / X * tot
print (residue)
0.999985000050005

That is,
3
= Y (1-n/X)*=0.999985...,
X n<X
and so the residue of {(s) at 1 is approximately 1.

Remark 3. This is the conclusion we came to at the end of our meeting. Use this! It
works well and is very fast and easy to implement (assuming we can generate lots of
coefficients).

After choosing A large enough for initial convergence, choosing larger smoothing
powers doesn’t necessarily correspond to more rapid convergence. Tail behavior is
determined by the growth of the shifted integral. While there is a difference between
“quickly growing” and “decaying”, there is much less difference between “decaying”
and “decaying more”.

More technically, the function
I'(1+A)(s)

TA+A+s)

has a pole at s = 0 from the gamma functions (and depending on the Dirichlet series
D(s), possibly also a pole from D(s) at s =0). If A is sufficiently large and D(s) suffi-
ciently well-behaved that we can shift the line of integration to the left of 0, then the
secondary contribution coming from this second pole will control convergence — and
this behavior is essentially independent of A.

D(s)X?®

NUMERICALLY COMPUTING RESIDUES OF L-FUNCTIONS 6

2.4. Rigorous estimates. To make these estimately rigorous, we would need an ab-
solute bound or understanding of the constants from the O(-) bounds above.

In the case of automorphic L-functions, it would be possible to convert the Riesz
mean approach described above into rigorous estimates for the residues (and thus
rigorous estimates for the Petersson inner products). To make this fully rigorous,
we would either need to have a proved bound for the coefficients |a(n)| or accept a
Ramanujan-Petersson type conjecture.

We can do any GL(2) type Hecke modular form, for example: using either Deligne’s
result on |a(p)| or the Kim—Sarnak bounds.

Coefficient bounds are also usually available for L-functions coming from varieties;
the Hecke bound from elliptic curves, for example. (Of course we expect these to all be
automorphic in some sense, but what we expect and what we can prove differ).

The structure of making this rigorous would look like

(1) Give explicit bounds for |a(n)|.

(2) Use this to bound |[L(2 + i2)|.

(3) Produce the corresponding (weak exponent) convexity estimate on the interval
—1 <Res < 2. Make the constant dependence explicit!

(4) Choose A > 1 large enough to compensate for the weak convexity estimate
growth.

(5) Bound the resulting shifted integral along the line Res =e.

I note that I use a wider interval for the convexity argument than the typical [0, 1]
or [—€,1+€] argument. This is because we are not optimizing for the best-possible poly-
nomial growth in the strip: we are instead optimizing for easy-to-understand bounds
for L(2 + it) and simple, explicit coefficient growth.

I leave that for another day.

REFERENCES

[Bum98] Daniel Bump. Automorphic forms and representations, volume 55. Cam-
bridge University Press, 1998. (Cited on page 2)
[MV07] Hugh L. Montgomery and Robert C. Vaughan. Multiplicative number theory.
1. Classical theory, volume 97 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 2007. (Cited on page 4)

	1. Computing Petersson Inner Products via Hidden Unfolding
	2. Numerically estimating residues of L-functions
	2.1. Direct estimation
	2.2. Partial sums
	2.3. Smoothed partial sums
	2.4. Rigorous estimates

	References

