
GENERAL REPORT ON MACHINE LEARNING EXPERIMENTS
FOR THE MÖBIUS FUNCTION

DAVID LOWRY-DUDA
LAST UPDATED: 2024.10.19

Abstract. Last week, I was at the Mathematics and Machine Learning pro-
gram at Harvard’s Center of Mathematical Sciences and Applications. The
underlying topic was on number theory and I’ve been studying various num-
ber theoretic problems from a machine learning perspective.

Initially, I sought to get Int2Int [Int2Int] to work. Then I set it on various
examples. I describe some of them here.

Contents

1. Introduction 1
2. Mobius Function 1
3. Better than Random: squarefree detection 2
4. How to guess if µ(n)= 0 given n mod p 3
5. Modified Experiments 4
References 5

1. Introduction

I’ve been computing several experiments related to estimating the Mobius
function µ(n). I don’t expect µ(n) to be easily approximable; all earlier attempts
to study µ using machine learning have resisted much success. This is related
to Mobius Randomness (see for example [Sarnak]).

Previous machine learning experiments on studying µ(n) have used neural
networks or classifiers. Francois Charton made an integer sequence to inte-
ger sequence transformer-based translator, Int2Int, and I thought it would be
fun to see if this works any different. I’m splitting my description into two
parts: a general report and a technical report [DLD-Technical]. This is the
general report. The technical † report includes technical details for running or †By “technical” here, I mean pertaining to tech-

nology (i.e. to programming). Both notes are
nonelementary. But I acknowledge that there
are very few people who are experts in both
number theory and machine learning.

re-running Int2Int experiments and other programming-related aspects.

2. Mobius Function

Recall that the mobius function µ(n) is 0 if the square of any prime divides
n, and otherwise is (−1)ω(n), where ω(n) is the number of prime divisors of n.
For example, µ(1)= 1,µ(2)=µ(3)=−1,µ(4)= 0,µ(5)=−1,µ(6)= 1, and so on.

Int2Int takes as input a sequence of integers, and the output is a sequence of
integers. I struggled to make sense of studying many outputs, but this is really
my own problem.

1

https://cmsa.fas.harvard.edu/event/mml2024/
https://github.com/f-charton/Int2Int/


GENERAL REPORT ON MACHINE LEARNING EXPERIMENTS FOR THE MÖBIUS FUNCTION 2

2.1. Inputs and Outputs for Möbius. Int2Int takes sequences of integers as
input and produces sequences of integers as output. I tried several variations
to estimate µ(n), including

1. Input just n and output µ(n). (Or rather, make sure I can get Int2Int to
process anything at all with the simplest possible example).

2. Input n mod p and p for the first 100 primes.
3. Input n mod p and p for the second 100 primes.
4. Input the Legendre symbol (n/p) for the first 100 primes.
5. Input n, n mod p, and (n/p) for the first 100 primes.

For each of these, I estimated µ(n), µ2(n), and µ(n+1). The input n were
sampled uniformly randomly from n between 2 and 1013 (with a few larger ex-
periments here and there), using training sets between 2 ·106 for initial runs
and 5 ·107 to investigate further. I also trained over n restricted to be square-
free.

3. Better than Random: squarefree detection

I quickly saw that Int2Int could guess µ(n) better than random guesses. But
the reason why was because it was determining if n was squarefree or not with
reasonable accuracy. † †This is similar to a pattern observed by Jor-

dan Ellenberg when attempting to train neural
networks to estimate µ(n). The network seemed
to figure out eventually that 4 | n =⇒ µ(n) = 0,
and then sometime later that 9 | n also implies
µ(n) = 0. Presumably it would figure out other
squares later, eventually.

The Int2Int models were determining whether n was squarefree or not with
very high accuracy, and then guessing µ(n) = ±1 randomly when it thought n
was squarefree. Some of these models were guessing µ(n) correctly around 60
percent of the time: far better than chance.

Looking closer, the best-performing model (which also had the most data:
n,n mod p, and (n/p) for the first 100 primes p) correctly recognized almost 92
percent of squareful numbers, † but only correctly recognized whether µ(n) = †Be careful with what is the condition here. In

particular it doesn’t say that the model com-
putes µ(n) correctly 92 percent of the time.

±1 about 40 percent of the time. Using that the density of squareful numbers
is about 0.39, this gave the overall correctness at

0.39 ·0.92+0.61 ·0.4≈ 0.6,

recovering the approximately 60 percent overall correctness. The model tended
to overestimate the number of squareful numbers and guessed that several
squarefree numbers were squareful.

This occurred quickly when trained using quadratic residue symbols. I wasn’t
initially surprised by this because of course Legendre symbols include infor-
mation about squares. Thus it should be possible to quickly train a network
to recognize most squares given (n/p) for the first 100 primes (most numbers
are divisible mostly by small primes, and hence checking small prime behavior
usually suffices).

But here we’re looking at numbers that are or are not squarefree: multiply-
ing a square by a squarefree number mixes up all the quadratic residues and
nonresidues.

With a bit more training, having only n mod p for the first 100 primes pro-
duced very similar behavior. How was it doing this?

This is an interesting purely mathematical question: how
would you guess whether n is squarefree or not given n mod p
for lots of primes p?

One way would be to perform the Chinese remainder theorem, reconstruct
n, and then actually check. Is the model recognizing something like this?

To test, I ran several experiments along the following lines:



GENERAL REPORT ON MACHINE LEARNING EXPERIMENTS FOR THE MÖBIUS FUNCTION 3

1. Given (n mod p) for the first 100 primes, output if n is in the interval
[106,2 ·106].

2. Given (n mod p) for the first 100 primes but excluding 7, output n mod
7.

These probe CRT-type knowledge. I sample input n uniformly at random
from large intervals. The frequencies of each residue class should be approxi-
mately uniformly randomly distributed.

But the model never did better than random guessing on either of this type
of experiment. I guess the model isn’t recovering CRT-like information.

Remark 1. I’m also looking to determine behavior mod p2 or p3 using this
type of transformer model. This is similar to CRT-like information, but slightly
different. I’ll talk about this later.

4. How to guess if µ(n)= 0 given n mod p

After talking with Noam Elkies and Andrew Sutherland, I think I know how
the model is guessing when µ(n)= 0 with such high accuracy. The point is that
numbers that are not squarefree are probably divisible by a small square and
thus likely to be 0 mod a small prime. Numbers that are squarefree might be
0 mod a small prime, but not as often.

Let’s look at this in greater detail.
The zeta function associated to squarefree numbers is

ζSF(s)=∏
p

(
1+ 1

ps

)
= ζ(s)/ζ(2s).

Thus the ratio of numbers up to X that are squarefree is about

Ress=1ζ(s)/ζ(2s)= 1/ζ(2)= 6
π2 ≈ 0.6079

The default algorithm to use would be to guess that every integer is square-
free: this is right just over 60 percent of the time. We need to do better than
that.

The zeta function associated to even squarefree numbers is

1
2s

∏
p

p ̸=2

(
1+ 1

ps

)
= 1

2s
ζ(2)(s)
ζ(2)(2s)

= 1
2s

(1−1/2s)
(1−1/4s)

ζ(s)
ζ(2s)

.

It follows that the ratio of numbers up to X that are even and squarefree is
about

1
2

1/2
3/4

6
π2 = 1

3
6
π2 .

This implies that the remaining 2
3

6
π2 X squarefree integers up to X are odd. We

could see this directly by noting that the corresponding zeta function is∏
p

p ̸=2

(
1+ 1

ps

)
= (1−1/2s)

(1−1/4s)
ζ(s)
ζ(2s)

,

and computing the residue as (1/2)/(3/4) · 6
π2 = 2

3
6
π2 .

A squarefree integer is twice as likely to be odd as even.
For this classification problem, we’re interested in the converse conditional:

what is the probability that n is squarefree given that it is even (or odd)? Basic



GENERAL REPORT ON MACHINE LEARNING EXPERIMENTS FOR THE MÖBIUS FUNCTION 4

probability shows that

P(sqfree|even)= P(even and sqfree)
P(even)

=
1
3

6
π2

1
2

≈ 0.4052

and

P(sqfree|odd)= P(odd and sqfree)
P(odd)

=
2
3

6
π2

1
2

≈ 0.8105.

This already gives a better-than-naive strategy: if n is even, guess that it’s
not squarefree (correct about 1−0.4052≈ 0.6 of the time); if n is odd, then guess
squarefree (correct about 0.8105 of the time). This should be correct about
0.5 · (1−0.4052)+0.5 · (0.8105)≈ 0.7 (or actually 0.7026423. . .) of the time.

As 0.7> 6/π2, this type of thinking is an improvement.
This readily generalizes to other primes. The Dirichlet series for squarefree

numbers that are divisible by a fixed prime q is
1
qs

∏
p

p ̸=q

(
1+ 1

ps

)
= 1

qs
(1−1/qs)
(1−1/q2s)

ζ(s)
ζ(2s)

,

and the series for squarefree numbers that aren’t divisible by a fixed prime q is
the same, but without q−s. Thus the percentage of integers that are squarefree
and divisible by q or not divisible by q are, respectively,

1
q+1

6
π2 and

q
q+1

6
π2 .

Playing conditional probabilities as above shows that

P(sqfree|q-even)= P(sqfree and q-even)
P(q-even)

= q
q+1

6
π2

P(sqfree|q-odd)= P(sqfree and q-odd)
P(q-odd)

= q2

q2 −1
6
π2 .

I use the adhoc shorthand q-even to mean divisible by q, and q-odd to mean
not divisible by q.

The differences are the largest when the prime q is small. A good strategy
would then be to look at a couple of small primes q and then predict whether n
is squarefree based on divisibility rules for the primes q.

I’ve ignored all the joint probabilities. These are explicitly computable by
computing the local densities at the appropriate primes, as above. But the point
is that divisibility by primes q correlates nontrivially with being squarefree,
and this sort of table correlation is something that we should expect machine
learning to figure out.

Explicit computation shows that using the first 20 primes and guessing squarefree
or not squarefree based on which divisibility pattern of those primes is more
common yields an overall correct rate of 70.3 percent, only 0.1 percent higher
than using 2 alone.

We might hope that machine learning could learn to do better. Computing
the table of cross correlations given sufficient data isn’t hard. But ML models
should also determine weights to use for better outcome prediction. Predicting
what ML can or can’t do is much harder.

5. Modified Experiments

Inspired by the above, I tried other experiments.



GENERAL REPORT ON MACHINE LEARNING EXPERIMENTS FOR THE MÖBIUS FUNCTION 5

5.1. Pure squarefree detection. With the same inputs, I looked at guessing
µ(n)2. That is, I tried to look just at the squarefree detection powers.

Overall, the models were correct about 70 percent of the time. This is consis-
tent with the above behavior and with the heuristic that it could only use mod
2 information.

5.2. Restricting to squarefree n. In the other direction, I also restricted all
inputs to squarefree n. This balances the expected outputs: about 50 percent
each should correspond to −1 and about 50 percent should correspond to 1. Any
prediction with accuracy greater than 50 percent would be a major achieve-
ment.

None of these models did any better than 50 percent consistently.

5.3. Removing 2. Still input n mod p for 100 primes, but use the 100 primes
after 2. As we saw above, 2 has the most explanatory power using pure Bayesian
probability. This asks: is the machine learning doing anything else other than
the 2-based cross correlations described above?

In short, the performance plummeted to less than 50 percent accuracy for
guessing µ(n). The performance was consistent with determining whether n
was squarefree correctly about 60 percent of the time, and then guessing ran-
domly between +1 and −1 when n was determined to be squarefree.

And this is consistent with using the pure Bayesian probabilistic approach
on exactly the prime 3. Indeed, the probability that n is squarefree given that
3 divides n is (3/4)·6/π2 ≈ 0.4559, and the probability that n is squarefree given
that 3 doesn’t divide n is (9/8) ·6/π2 ≈ 0.6839. Thus 1/3 of the time, we would
guess “not squarefree” with accuracy 1− 0.4559 and the rest of the time we
would guess “squarefree” with accuracy 0.6839, giving a total accuracy around

(1/3) · (1− 3
46/π2)+ (2/3) · 9

86/π2 ≈ 0.6372.

References

[DLD-Technical] David Lowry-Duda, Technical Report on Machine Learning
Experiments for the Möbius Function. 2024 October 21. (Cited on page 1)

[Int2Int] Int2Int Github Repository, https://github.com/f-charton/

Int2Int. Accesssed 2024 October 20. (Cited on page 1)
[Sarnak] Peter Sarnak, Three lectures on Möbius randomness, 2011.

See https://publications.ias.edu/sites/default/files/

MobiusFunctionsLectures(2).pdf. (Cited on page 1)

https://github.com/f-charton/Int2Int
https://github.com/f-charton/Int2Int
https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf
https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf

	1. Introduction
	2. Mobius Function
	3. Better than Random: squarefree detection
	4. How to guess if \mu(n) = 0 given n \bmod p
	5. Modified Experiments
	References

