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The Möbius function µ(n) is defined by

µ(n) =

{
0 if p2 | n for some p

(−1)d if n is a product of d distinct primes.

For example, µ(2) = µ(3) = µ(5) = −1, and µ(6) = µ(10) = µ(15) = 1,

and µ(4) = µ(9) = µ(12) = 0. The Möbius function is fundamental in

number theory. It appears in many places, but one is that the reciprocal

of the Riemann zeta function ζ(s) =
∑

n≥1
1
ns is

1

ζ(s)
=
∑
n≥1

µ(n)

ns
.

It encodes data about prime numbers and prime factorization.
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Despite being fundamental, understanding µ(n) is extraordinarily hard.

The fact that ∑
n≤X

µ(n) = o(X )

is equivalent to the prime number theorem (counting the number of

primes up to X ).

More generally, it is conjectured that µ(n) is orthogonal to any function f

that “isn’t too complex”, or rather that∣∣∣∣∑
n≤X

µ(n)f (n)

∣∣∣∣ = o

(∣∣∣∣∑
n≤X

f (n)

∣∣∣∣).
Observe that µ2(n) is 0 if n is divisible by a (nontrivial) square, and

otherwise is 1. It’s the squarefree indicator function.

Though it feels simple, in practice it’s also extremely difficult to compute

exactly.
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What should we expect?

About 60% of integers are squarefree, and squarefree integers have

approximately equal probabilities of having µ(n) = 1 or µ(n) = −1.

We’re looking for improvements over guessing µ(n) = 0 (true 40% of the

time) or µ2(n) = 0 (true 60% of the time).

It’s easy to write down a silly algorithm: determine if 4 or 9 or 25 (and so

on) divides n. If so, output 0. Otherwise guess ±1 randomly. (This

already classifies µ2(n) for 90% of integers n).

A generic neural network on input-output pairs (n, µ2(n)) slowly learns to

predict the silly algorithm above. To paraphrase Jordan Ellenberg (who

gave a talk that touched on this earlier this program), this leads to an

algorithm with nearly 100% accuracy and nearly 0% understanding.

3



Guiding Question

Can we learn something about µ(n) and µ2(n) beyond testing

divisibility by squares of small prime numbers?

And to do this, I chose to use François Charton’s Int2Int small

transformer model (https://github.com/f-charton/Int2Int).

(I’ve also run each of the experiments I describe below on neural

networks. In practice, fully trained models had similar performance as

Int2Int models, but took longer to train).
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Experimental Settings

More precisely, we think of this as a supervised translation task. Given an

integer n, we choose a representation of n as a sequence of integer

tokens, and train a sequence-to-sequence transformer model to minimize

the cross-entropy with model predictions.

The transformers have 4 layers, 512 dimensions, and 8 attention heads.

We used Adam as our optimizer.

The inputs for all initial experiments came from 107 integers n sampled

uniformly (without repetition) from (1, 1013).

(All credit here goes to Charton, who made Int2Int to be extremely easy

to use; and to Edgar Costa, who helped make it even easier).
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Initial Experiments

With the settings above, we need to choose how to encode n. Simply

encoding n directly (which in Int2Int means representing it as a base B

integer) leads to estimating the is-divisible-by-square-of-small-prime

function.

After trying several possibilities, I found that using a Chinese Remainder

Theorem type representation led to different behavior.

I initially trained four models:

Input Output

Pairs (n mod p, p) for the first 100 primes µ(n)

Pairs (n mod p, p) for the first 100 primes µ2(n)

Triples (n mod p, χp(n), p) for the first 100 primes µ(n)

Triples (n mod p, χp(n), p) for the first 100 primes µ2(n)
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1. Vastly better than chance.

2. I don’t show it, but including χp(n) gives similar behavior.
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Let’s look at one of the successful µ(n) prediction tables.

Prediction # Correct # in Eval Set % Correctly Predicted

0 3646 3924 92.92

1 1193 3026 39.42

−1 1116 3050 36.59

Examining its predictions on the evaluation set closer, one sees that the

model was pretty good at determining when µ(n) = 0. Otherwise it

guessed randomly between 1 and −1. (Sometimes it would pick

µ(n) = −1 always, or +1 always.)
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This broad form appeared with each of the input formats. One way to

force attention here is to restrict inputs to squarefree n. Training a model

with (n mod p, χp(n), p) inputs and restricting training and evaluation

data to squarefree n gives

Möbius Challenge

Train a model with inputs that are “easy to compute” (say, computable

in time ≪ logA(n)) and that distinguishes between cases µ(n) = 1 and

µ(n) = −1 with probability greater than 50%.
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Understanding model predictions

Can we figure out how the models compute µ2(n) so well?

How would I compute µ2(n) given n mod p for lots of primes? I would

use the Chinese Remainder Theorem to recover n and then do something

like trial division on n.

Of course, knowing n mod p isn’t enough to compute µ(n) actually. This

specifies what n is modulo
∏

p. We also need to know that (for

example) n,
∏

p.
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Is the model learning the Chinese Remainder Theorem

Is the transformer model doing the same thing that I would do?

To figure this out, I set up a series of experiments to try to test this.

� First, let’s test the Chinese Remainder Theorem directly. Feed in

inputs (n mod p) for the first 10 primes; output n (guaranteed to be

less than
∏

p). Does this work?

No. But we shouldn’t expect it to.

� Maybe it’s learning some aspects of the Chinese Remainder

Theorem. So let’s keep our inputs: triples (n mod p, χp(n), p). But

now output the indicator function for the interval [1, 5 · 1012]. Does
this work? No!

� Maybe it’s learning p-adic data. Given (n mod p, χp(n), p) triples,

output n mod 4. Does this work? Also no!

� Similarly, given (n mod p, χp(n), p) for the first 100 primes but

skipping 3, can it recover n mod 3? No!

� Given (n mod p, χp(n), p) for the second 100 primes, can it still

compute µ2(n) with high probability? No!
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The last experiment was the biggest clue. What inputs are actually being

used?

Restricting to the first 2 primes:

(If you could look very closely, you would see that this doesn’t do quite

as well as the first 100 primes. . . but it’s pretty close.)

This gives a concrete, purely mathematical claim. Knowing n mod 6 is

enough to guess µ2(n) with probability about 70%. (In fact, it was that

this was a purely correlative result that threw me off!)
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Explaining model predictions

Let’s look at the slightly simpler case of just the prime 2. Let P(sf)

denote the probability that a random integer is squarefree; let P(2) and

P(2̂) denote the probability that a random integer is divisible by 2 or not

divisible by 2, respectively.

Basic probability shows that P(sf|2) = P(sf, 2)/P(2). What is P(sf, 2)?

Let’s look at each prime: an even squarefree number must be 2 mod 4,

which happens with probability 1/4. For each other prime p, we must

have n ̸≡ 0 mod p2, which happens with probability (1− p−2). Hence

P(sf|2) = 2P(sf , 2) =
2

4

∏
p ̸=2

(
1− 1

p2

)
=

1

2

(
1− 1

4

)−1∏
p

(
1− 1

p2

)
=

2

3
ζ(2)−1 ≈ 0.4052 . . .

Similarly P(sf|2̂) = 4
3ζ(2)

−1 ≈ 0.8105.
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How would this theoretical computation work? Given even n, predict

µ2(n) = 0 (which is correct with probability 0.5948). Otherwise, say

µ2(n) = 1 (correct with probability 0.8105). Each scenario occurs with

probability 0.5. In total, this should be correct 70.2% of the time.

A similar calculation using only the prime 3 would be correct 63.7% of

the time. Using both 2 and 3 is slightly higher. Using the first 25 primes

would be correct 70.34% of the time.

(As an aside: I don’t know what

the limiting behavior should be).

More generally,

P(sf|p1, . . . , pN , q̂1, . . . , q̂D) =
∏
pi

(
pi

1 + pi

)∏
qj

(
q2j

q2j − 1

)
6

π2
.

The cross correlation tables aren’t uniform. Of course we should expect

ML to pick up on correlation. We can further test this by inputting

is divisp(n) instead of n mod p: the results for µ2(n) are essentially

indistinguishable.

14



How would this theoretical computation work? Given even n, predict

µ2(n) = 0 (which is correct with probability 0.5948). Otherwise, say

µ2(n) = 1 (correct with probability 0.8105). Each scenario occurs with

probability 0.5. In total, this should be correct 70.2% of the time.

A similar calculation using only the prime 3 would be correct 63.7% of

the time. Using both 2 and 3 is slightly higher. Using the first 25 primes

would be correct 70.34% of the time. (As an aside: I don’t know what

the limiting behavior should be).

More generally,

P(sf|p1, . . . , pN , q̂1, . . . , q̂D) =
∏
pi

(
pi

1 + pi

)∏
qj

(
q2j

q2j − 1

)
6

π2
.

The cross correlation tables aren’t uniform. Of course we should expect

ML to pick up on correlation. We can further test this by inputting

is divisp(n) instead of n mod p: the results for µ2(n) are essentially

indistinguishable.

14



How would this theoretical computation work? Given even n, predict

µ2(n) = 0 (which is correct with probability 0.5948). Otherwise, say

µ2(n) = 1 (correct with probability 0.8105). Each scenario occurs with

probability 0.5. In total, this should be correct 70.2% of the time.

A similar calculation using only the prime 3 would be correct 63.7% of

the time. Using both 2 and 3 is slightly higher. Using the first 25 primes

would be correct 70.34% of the time. (As an aside: I don’t know what

the limiting behavior should be).

More generally,

P(sf|p1, . . . , pN , q̂1, . . . , q̂D) =
∏
pi

(
pi

1 + pi

)∏
qj

(
q2j

q2j − 1

)
6

π2
.

The cross correlation tables aren’t uniform. Of course we should expect

ML to pick up on correlation.

We can further test this by inputting

is divisp(n) instead of n mod p: the results for µ2(n) are essentially

indistinguishable.

14



How would this theoretical computation work? Given even n, predict

µ2(n) = 0 (which is correct with probability 0.5948). Otherwise, say

µ2(n) = 1 (correct with probability 0.8105). Each scenario occurs with

probability 0.5. In total, this should be correct 70.2% of the time.

A similar calculation using only the prime 3 would be correct 63.7% of

the time. Using both 2 and 3 is slightly higher. Using the first 25 primes

would be correct 70.34% of the time. (As an aside: I don’t know what

the limiting behavior should be).

More generally,

P(sf|p1, . . . , pN , q̂1, . . . , q̂D) =
∏
pi

(
pi

1 + pi

)∏
qj

(
q2j

q2j − 1

)
6

π2
.

The cross correlation tables aren’t uniform. Of course we should expect

ML to pick up on correlation. We can further test this by inputting

is divisp(n) instead of n mod p: the results for µ2(n) are essentially

indistinguishable.

14



In hindsight, we should have expected this. It’s important to remember

that the model is trying to predict µ2(n), not trying to compute µ2(n).

When predicting µ(n), as the most common prediction class is now

squarefull numbers (40%, instead of 30% for each µ(n) = ±1), basic

correlation tables tend to favor overpredicting µ(n) = 0. This is one

explanation for why the µ(n) prediction data correctly identified over 90

percent of squarefull numbers: it was predicting squarefull by default.
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Conclusion

From afar, this looks similar to initial neural network experiments. Neural

networks trained on (n;µ2(n)) seem to learn the

is-divisible-by-a-small-prime-square function.

Int2Int trained on
(
{n mod p, χp(n)};µ2(n)

)
seems to learn the

is-divisible-by-a-small-prime function.
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But that’s an unkind characterization. It’s also true that this set of

experiments led to me learning something about the distribution of

squarefree numbers.

(It’s not particularly deep, but it’s also not nothing. And I talked about

this for a couple of days with some people and we were all a bit stumped.

I should note that Noam Elkies immediately realized what was going on.)

The fact that Int2Int is small and rapidly trainable means that I could use

it as a one-sided oracle. (That is, I could feed it data, and if it

successfully makes lots of predictions than I should expect the inputs to

have lots of explanatory power. By restricting inputs, it’s sometimes

possible to study which parts have explanatory power. Of course it’s an

“oracle” because it gives no explanations for its premonitions. And it’s

“one-sided” because often it simply fails to recognize the relationship

between the input and output, and this isn’t indicative).
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Thank you very much.

Please note that these slides are

(or will soon be)

available on my website davidlowryduda.com.

17


