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I want to give complete details about a set of descriptions in Bump [Bum98]
concerning Hecke operators and Hecke algebras. I like that Bump’s description
is so light on annoying computation. But the problem is that I think too much
is swept under the rug.

So here, I fill in more details (but mostly keep the same presentation as
there).

1. Double Cosets

If H is a group acting on the left on a set X , the set of orbits of X under this
action is denoted by H\X . If H acts on X on the right, we denote the set of
orbits by X /H. When H1 acts on X on the left and H2 acts on X on the right,
and if the actions are compatible in the sense that

(h1x)h2 = h1(xh2)

for all h1 ∈ H1, x ∈ X , and h2 ∈ H2, then we again have a nicely defined dual-
action and we have orbits under this dual action. Two elements x and y in X
are in the same orbit if and only if x = h1 yh2 for some h1 and h2. We denote
these orbits by H1\X /H2.

One easy source of compatible actions are when H1 and H2 are subgroups
of a group G = X . Then H1\G/H2 is the set of double cosets H1 gH2.

Below, we let Γ(1)=SL(2,Z).

Proposition 1. Takeα ∈GL(2,Q)+. The double cosetΓ(1)αΓ(1) is a finite union
of right cosets

Γ(1)αΓ(1)=⋃
i
Γ(1)αi, αi ∈GL(2,Q)+.

The number of right cosets is equal to [Γ(1) :α−1Γ(1)α∩Γ(1)]<∞.

For this proof, we follow Bump closely and add only a couple of additional
details.

Proof. Multiplying on the right by α−1 is a bijection of GL(2,Q)+ onto itself.
This gives an obvious bijection between the sets of orbits

Γ(1)\Γ(1)αΓ(1)←→Γ(1)\Γ(1)αΓ(1)α−1.
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Any element U of Γ(1)\Γ(1)αΓ(1)α−1 can be written as U = Γ(1)γαuα−1 =
Γ(1)αuα−1 ∈ αΓ(1)α−1 for some γ,u ∈ Γ(1). Observe that two orbits orbits
U =Γ(1)αuα−1 and V =Γ(1)αvα−1 are the same when

Γ(1)αuα−1 =Γ(1)αvα−1 ⇐⇒ Γ(1)αu =Γ(1)αv

⇐⇒ Γ(1)αuv−1α−1 =Γ(1)

⇐⇒ αuv−1α−1 ∈Γ(1)∩αΓ(1)α−1.

Thus we have directly seen that
Γ(1)\Γ(1)αΓ(1)α−1 ∼= (Γ(1)∩αΓ(1)α−1)\αΓ(1)α−1.

Conjugating by α gives a bijection between this set of cosets and the set of
cosets

(α−1Γ(1)α∩Γ(1))\Γ(1).
This shows that the cardinality is [Γ(1) : α−1Γ(1)α∩Γ(1)]. It only remains

to show that this is finite. This follows from Lemma 1.4.1 of Bump, which we
give below. □

Lemma 2 (Lemma 1.4.1 of Bump). Let Γ be a congruence subgroup of SL(2,Z).
Let α ∈GL(2,Q)+. Then α−1Γα∩Γ(1) is a congruence subgroup.

(This is an easy proof).
Now let Γ⊂SL(2,Z) be any congruence subgroup.

Corollary 3. Take α ∈ GL(2,Q)+. The double coset ΓαΓ is a finite union of
right cosets

ΓαΓ=⋃
Γαi, αi ∈GL(2,Q)+.

The number of right cosets is equal to [Γ :α−1Γα∩Γ].

Proof. Structurally, the proof is identical until we want to show that [Γ :α−1Γα∩
Γ] <∞. This follows from a general result: if [G : H1] <∞ and [G : H2] <∞,
then [G : H1 ∩H2]<∞. We prove this in Lemma 4 below.

We apply this repeatedly to a lattice of subgroups formed from Γ(1) and
α−1Γ(1)α. Note that [Γ(1) : Γ] <∞ and [α−1Γ(1)α : α−1Γα] <∞ because Γ is a
congruence subgroup. And as shown above, Γ(1)∩α−1Γ(1)α has finite index in
both Γ(1) and α−1Γ(1)α.

Applying Lemma 4 to Γ and Γ(1)∩α−1Γ(1)α in Γ(1) shows that Γ∩α−1Γ(1)α
has finite index in Γ(1). Applying Lemma 4 to Γ(1)∩α−1Γ(1)α andα−1Γα inside
α−1Γ(1)α shows that Γ(1)∩α−1Γα has finite index in α−1Γ(1)α.

Finally, applying the lemma once more to Γ(1)∩α−1Γα and Γ∩α−1Γ(1)α
(which we’ve now shown have finite index in either Γ(1) or α−1Γ(1)α) shows
that Γ∩α−1Γα has finite index in Γ(1) and α−1Γ(1)α. (And thus also in Γ). □

This proof is annoying. It’s slightly clearer if one draws the lattice of sub-
groups. Alternately, here is the idea: we start with Γ(1) and α−1Γ(1)α. We
twice pass to Γ (and use finite index because it’s a congruence subgroup) to get
results on smaller groups. We apply the previous result once to understand
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Γ(1)∩α−1Γ(1)α. We then repeatedly (three times — once for the first group,
once for the second group, and then once together) intersect things with Γ and
things with Γ(1) to pass to the smaller subgroups.

Lemma 4. If [G : H1]<∞ and [G : H2]<∞, then [G : H1 ∩H2]<∞.

Proof. The group G acts on the cross-product of orbits G/H1 ×G/H2 by mul-
tiplication in each coordinate: g(aH1,bH2) = (gaH1, gbH2). The stabilizer of
the orbit of (1,1), i.e. of (H1,H2), consists of those g ∈ G such that gH1 = H1
and gH2 = H2. Of course, gH1 = H1 ⇐⇒ g ∈ H1, similarly for H2. Thus the
stabilizer is H1 ∩H2.

By the orbit-stabilizer theorem, [G : H1 ∩H2] = |O(H1,H2)|, the size of the
orbit of (H1,H2) under multiplication by G. As both H1 and H2 have finite
index in G, the size of this orbit is at most the product of the indices. Thus
[G : H1 ∩H2]≤ [G : H1][G : H2]. □

2. Hecke Algebra

We define the Hecke algebra R associated to a congruence subgroup Γ. As
an abelian group, R is the free abelian group on symbols Tα = [ΓαΓ] as α runs
through a complete set of representatives for Γ\GL(2,Q)+/Γ.

Defining the multiplication on R is annoying. It’s nonobvious how to define
multiplication on R directly — a lot of the complexity of various introductions
to Hecke algebras comes what path is taken to define multiplication. The ap-
proach we take here is to define an action of R on a particular set, and the nec-
essary structure for this to be a well-defined action will give our multiplicative
structure.

2.1. Defining an action. Given any group G, a (right) G-module M is an
abelian group with a Z-linear G action. I emphasize that we will use right
multiplication here, which (in my experience) is much less common.

For a G-module M and a subgroup Γ≤G, write MΓ to be the fixed points of
M under the action of G,

MΓ := {m ∈ M : mγ= m ∀ γ ∈Γ}.

Suppose that for any g ∈ G, we have [Γ : Γ∩ g−1Γg] <∞. The argument from
Proposition 1 and its corollary shows that

ΓgΓ=⋃
Γg i, g i ∈G. (1)

We now define the action of the element [ΓgΓ] (thought of as an element of
R(G,Γ), the abelian free group on the symbols [ΓαΓ] where α ranges over ele-
ments of Γ\G/Γ) on an element m ∈ MΓ as

m | [ΓgΓ] :=∑
i

mg i,

where the g i are as in (1).

Proposition 5. We prove two properties of this action. Let m ∈ MΓ and g ∈G
as above.
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(1) m | [ΓgΓ] depends only on the double coset ΓgΓ.
(2) m | [ΓgΓ] ∈ MΓ.

To make sure this makes sense: the item [ΓgΓ] is a formal symbol, a basis
element in an abelian free group on symbols. The content of this proposition is
that using any symbol from the same double coset is equivalent, and the action
yields an element of M stabilized by Γ.

Proof. Suppose ΓgΓ=⋃
Γg′

i for g′
i = γi g i. Any such choice is an equally valid

way of writing ΓgΓ as a union of right cosets. Then∑
i

mg′
i =

∑
i

(mγi)g i =
∑

i
mg i,

where we have used that m ∈ MΓ. This proves the first claim.
For the second claim, the point is that ⋃

Γg i is a complete set of coset repre-
sentatives for ΓgΓ. Multiplying on the right by h ∈G doesn’t change ΓgΓ, and
hence {Γg ih} is a permutation {Γg j} of the coset representatives. This means
that (

m | [ΓgΓ]
)
h = (∑

i
mg i

)
h =∑

i
mg ih =∑

j
mg j = m | [ΓgΓ],

proving the second claim. □

Now let Z[Γ\G] be the free abelian group on cosets [Γg]. The group G acts
on the right onZ[Γ\G] by right multiplication. Consider the map fromR(G,Γ),
the free abelian group on double cosets [ΓgΓ] with g ranging across represen-
tatives Γ\G/Γ, to Z[Γ\G]Γ given by

F : R(G,Γ)−→Z[Γ\G]Γ

[ΓgΓ] 7→∑
[Γg i],

(2)

where ΓgΓ=⋃
Γg i. The double coset [ΓgΓ] is a (right) orbit of the single coset

Γ\G under Γ, which are exactly those elements ofZ[Γ\G] invariant under right
multiplication by Γ. Thus F is an isomorphism.

Proposition 6. The free abelian group R(G,Γ) on double cosets [ΓgΓ] with g
ranging across representatives Γ\G/Γ is isomorphic to the submodule of Z[Γ\G]
fixed under right multiplication by Γ. (The isomorphism is as groups).

Theorem 7. There is a product on R(G,Γ) making it into an associative ring,
such that for any (right) G-module M we have MΓ is a right R(G,Γ) module.

Proof. Take M =Z[Γ\G] initially. Write ΓgΓ=⋃
Γg i and ΓhΓ=⋃

Γh j.
We claim that ∑

i, j
[Γg ih j] ∈ MΓ.

To see this, note that F([ΓgΓ])=∑
i[Γg i] ∈ MΓ. Now compute∑

i
[Γg i] | [ΓhΓ]=∑

i, j
[Γg ih j]
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by the definition of the right action of R(G,Γ). By Proposition 5, this is in MΓ

and is well-defined.
The point that we’ve been working towards this whole time is that we can

define
[ΓgΓ] · [ΓhΓ]= F−1

(∑
i, j

[Γg ih j]
)
,

where F is the isomorphism from (2). This is clearly associative as associativity
in G is associative, and the isomorphism preserves this. The multiplicative
unit is [Γ1Γ].

And more generally, if M is any right G-module, then for m ∈ MΓ we have

m | [ΓgΓ] | [ΓhΓ]=∑
mg i | [ΓhΓ]=∑

mg ih j = m | ([ΓgΓ] · [ΓhΓ]
)
.

□

As used here, the actual multiplication is defined through F−1. This is an-
noying.

We now give an explicit formula. To do so, we suppose we have a fixes set of
representatives σ ranging over Γ\G/Γ.

Proposition 8. Write ΓgΓ=⋃
Γg i and ΓhΓ=⋃

Γh j. Then

[ΓgΓ] · [ΓhΓ]= ∑
σ∈Γ\G/Γ

m(h, g;σ)[ΓσΓ],

where m(h, g;σ) is the number of pairs (i, j) such that Γg ih j =Γσ.

Proof. We define [ΓgΓ]·[ΓhΓ]= F−1(∑
i, j[Γg ih j]

)
, where F takes [ΓgΓ] to

∑
[Γg i]

for all i in an index set I (similarly for [ΓhΓ] and [Γh j] for j ∈ J) and where the
sum is over all (i, j) ∈ I × J.

This is a matter of identifying the preimage correctly. Any element inR(G,Γ)
has the form

∑
mσ[ΓσΓ] for some integers mσ. How do we determine what mσ

is?
For each σ in the preimage (i.e. where mσ > 0), it must be that ΓσΓ =⋃

i, j∈AΓg ih j, for some indices i, j in some index set A. It’s not necessary for
A = I×J — it’s only necessary that the union is stable under right multiplica-
tion by Γ, which could be in a smaller index set.

Thinking of ΓσΓ = (Γσ)Γ as a right orbit of Γσ, it suffices to count how of-
ten Γσ = Γg ih j for any pair (i, j). For each pair (i, j) with Γσ = Γg ih j, the
preimage of

∑
i, j[Γg ih j] must include at least 1 [ΓσΓ]. As σ ranges across

representatives of (Γ\G)/Γ (where we’ve added parentheses for emphasis), no
other elements require any further [ΓσΓ]. Thus we find that mσ = m(h, g;σ)
is the number of pairs (i, j) such that Γg ih j =Γσ.

Stated differently: for any σ with Γσ = Γg ih j for some (i, j) pair, the full
orbit ΓσΓ will be given by a union ⋃

Γg ih j across some index set. Instead of
counting each element of the index set, we only count the “trivial” elements
of the orbits under Γ, given by Γσ ·1. The other elements are handled by the
averaging of F, and the fact that R(G,Γ) is isomorphic to Z[Γ\G]Γ means that
we don’t have to worry about the preimage not existing. □
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Corollary 9. Write ΓgΓ=⋃
Γg i, ΓhΓ=⋃

Γh j, and Γ f Γ=⋃
Γ fk. Then

[ΓgΓ] · [ΓhΓ] · [Γ f Γ]= ∑
σ∈Γ\G/Γ

m(h, g, f ;σ)[ΓσΓ]

where m(h, g, f ;σ) is the number of triples (i, j,k) such that Γg ih j fk =Γσ.

Proof. As above, we define [ΓgΓ]·[ΓhΓ]·[Γ f Γ]= F−1(∑
i, j,k[Γg ih j fk]

)
. The idea

is the same: it’s sufficient to account for the trivial elements of orbits, Γσ ·1.
And these give one [ΓσΓ] for each σ with Γσ=Γg ih j fk, exactly as before. □

The statement of Corollary 9 is stated without proof in Bump as a way to
note that multiplication in a Hecke algebra is associative.

Remark 10. Bump defines only the Hecke algebraR(GL(2,Q)+,SL(2,Z)), while
the presentation here is more general. I don’t know much about Hecke alge-
bras apart from their use in automorphic forms and representations.

3. Acting on Modular Forms

To end, we bring this discussion back to the context of modular forms, as in
the first chapter of Bump [Bum98].

LetR denote the Hecke algebraR(GL(2,Q)+,SL(2,Z)). Let Mk = Mk(SL(2,Z))
denote the space of holomorphic modular forms of level 1 and weight k. Then
Mk is a (right) GL(2,Q)+ module under the slash operator

( f | γ)(z) := (detγ)k/2(cz+d)−k f (γz), γ ∈GL(2,Q)+.

Verifying that ( f | γ) | γ′ = f | (γγ′) is a straightforward direct calculation.
By Theorem 7, MSL(2,Z)

k (i.e. the space of modular forms in Mk fixed by the
action of SL(2,Z)) is a right R module. The definition of modularity gives im-
mediately that MSL(2,Z)

k = Mk, so this shows that Mk is a right R module. For
α ∈ GL(2,Q)+, we denote the element ΓαΓ= SL(2,Z)αSL(2,Z) ∈R by Tα. For
f ∈ Mk and α ∈GL(2,Q)+, the right action is given by

f | Tα := f | [SL(2,Z)αSL(2,Z)]=∑
i

f |αi,

where
SL(2,Z)αSL(2,Z)=⋃

i
αi

as a disjoint union (cf. Proposition 1). Various properties claimed or shown in
Bump follow from our discussion:

(1) Proposition 5 shows that f | Tα depends only on the equivalence class
of α (and not on the choice of representatives αi), and further that f |
Tα ∈ Mk.

(2) By Proposition 8, we have that
( f | Tα) | Tβ =

∑
σ∈SL(2,Z)\GL(2,Q)+/SL(2,Z)

m(α,β;σ)( f | Tσ).

This is a proof of equation 4.4 in Bump [Bum98] (although in Bump
this falls out as a consequence of the definition).
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(3) The action of R on Mk is associative! The associativity (and other prop-
erties) are baked into the formulation given in this note: multiplication
in R(G,Γ) comes from the right action of R(G,Γ) on Z[Γ\G]Γ, and this
right action is trivially associative because group multiplication is as-
sociative. As noted above, Corollary 9 proves an unproven assertion in
Bump.

I note that neither the presentation in Bump or the presentation here makes
it obvious that the Hecke algebra R, or those associated to congruence sub-
groups, is commutative. This structural result is remarkable, but I don’t dis-
cuss that further here.
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