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I want to look at smooth cubic surfaces in P3 defined over Z (or equivalently,
over Q). By “cubic surface” here, I will always mean a smooth cubic surface
in P3. Every smooth cubic surface has exactly 27 lines. This is a famous fact
that appears in many algebraic geometry books, but whose proof I only know
mechanically. These lines are distinct, so there is no multiplicity-shenanigans
going on. In general these lines won’t be defined over Z, they’re defined over
some number field K /Q. It is a remarkable fact that as long as the surface is
defined over Q, the lines are defined over a number field K of degree at most
51840 over Q.

In this note, I clarify some reasoning around cubic surfaces and their explicit
computation as a blowup of 6 points in P2.

1. First Example

Every cubic surface is the blow up of P2 at 6 points. All 27 lines come from
the 6 points.

(1) There are 6 lines coming from exceptional divisors (i.e. the free lines
we get by blowing up P2 at each point).

(2) There are
(6
2
)= 15 lines coming from lines between two of the points.

(3) There are
(6
5
)= 6 lines coming from conics passing through 5 of the six

points.
Given six points in general position, we can write down one expression for

the cubic surface by taking the subspace of cubic homogenous polynomials in
three variables on P2 that vanish on those 6 points.

Let’s use the points P1, . . . ,P6 given by
[1 : 1 : 0] [1 :−1 : 0] [1 : 0 :

p
2]

[1 : 0 :−1] [0 : 1 : 1] [1 : 1 : 1].
We first begin with the 10 dimensional space of cubic homogeneous polyno-

mials in three variables on P2, written generically as

F(x, y, z)= ∑
i+ j+k=3

ai jkxi y j zk.
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I fix an ordering of the monomials in order to do this completely concretely. I
use dictionary ordering, with x < y< z, i.e. the 10 basis monomials in order are

x3, x2 y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3.

To find the subspace consisting of cubic homogenous polynomials that vanish
at the 6 given points, we compute the right kernel of the corresponding linear
map. For example, vanishing at the point [1 : 1 : 0] is equivalent to having 0
dot product with the vector

(1,1,0,1,0,0,1,0,0,0)

(again, given in the order specified above). One such vector, for example, is
(1,0,0,−1,1,−1,0,0,0,0).

Because I am forgetful, let’s spell this out completely. We compute each
monomial, in order, at [1 : 1 : 0]. For example, x3 = 1, x2 y = 1, x2z = 0, xy2 = 1,
which is why the vector begins (1,1,0,1, . . .). Any vector that has 0 dot product
with this vector will then vanish: the claimed vector is x3 − xy2 + xyz − xz2

(again, using the very specific ordering of monomials I fixed above). At [1 : 1 : 0],
this is 1−1+0−0= 0.

In total, we want to compute the (right) kernel of the matrix

1 1 0 1 0 0 1 0 0 0
1 −1 0 1 0 0 −1 0 0 0
1 0

p
2 0 0 2 0 0 0 2

p
2

1 0 −1 0 0 1 0 0 0 −1
0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1

 .

I do this in sage.
1 K.<sqrt2> = NumberField(x^2 - 2, embedding=1)

2 print(n(sqrt2))

3 # 1.41421...

4 mat = [

5 [1, 1, 0, 1, 0, 0, 1, 0, 0, 0],

6 [1, -1, 0, 1, 0, 0, -1, 0, 0, 0],

7 [1, 0, sqrt2, 0, 0, 2, 0, 0, 0, 2 * sqrt2],

8 [1, 0, -1, 0, 0, 1, 0, 0, 0, -1],

9 [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],

10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

11 ]

12 A = matrix(K, mat)

13 rk = A.right_kernel()

14 rk

This gives

RowSpanQ[sqrt2]/(sqrt2
2−2)


1 0 0 −1 −1

2sqrt2 + 3
2

1
2sqrt2 − 3

2 0 0 −1
2sqrt2 + 1

2
1
2sqrt2 − 1

2
0 1 0 0 −1 0 −1 0 1 0
0 0 1 0 1

2sqrt2 −2 −1
2sqrt2 +1 0 0 1

2sqrt2 −1
2sqrt2

0 0 0 0 0 0 0 1 −1 0
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The four dimensional kernel has basis given by the four basis vectors above.
We translate these using the monomial ordering. I’ll do this in sage too.

1 order = ("x^3", "x^2 y", "x^2 z", "x y^2", "xyz" , "x z^2",

"y^3", "y^2 z", "y z^2", "z^3"),→
2

3 def prettify(row):

4 ret = []

5 for c, label in zip(row, order):

6 if c:

7 if c == 1:

8 c = ''

9 elif c == -1:

10 c = '-'

11 ret.append(f"{c}{label}")

12 return " + ".join(ret)

13

14 for row in rk.matrix(): # annoying sage thing

15 prettify(row)

This gives the four basis elements
F0 = x3 +−xy2 + (−1

2

p
2+ 3

2 )xyz+ (1
2

p
2− 3

2 )xz2

+ (−1
2

p
2+ 1

2 )yz2 + (1
2

p
2− 1

2 )z3

F1 = x2 y+−xyz+−y3 + yz2

F2 = x2z+ (1
2

p
2−2)xyz+ (−1

2

p
2+1)xz2 + 1

2

p
2yz2 +−1

2

p
2z3

F3 = y2z+−yz2.

The corresponding cubic surface is (the Zariski closure of) the points
[F0(x, y, z) : F1(x, y, z) : F2(x, y, z) : F3(x, y, z)]⊂P3,

ranging across points (x : y : z) ∈P2 \{P1, . . . ,P6}.
Proofs that show that blowing up P2 at six points yield a cubic surface will

show that the map from P2 → [F0 : F1 : F2 : F3] ⊂ P3 can be extended in a
standard way to a map from the blowup Blowup6(P2) to P3, and this extended
map gives an isomorphism from the blowup to the cubic surface. A lot of the
proof really seems to be just making sure that dimensions work out.

1.1. Galois action. The field of definition for the 6 points in this example is
Q(

p
2). This has obvious Galois group C2, with only nontrivial automorphism

σ :
p

2 7→ −p2.
Observe that σ acts on the 6 points P1, . . . ,P6. The only point with nontrivial

Galois action is P3 = [1 : 0 :
p

2], which is sent to Pσ
3 = [1 : 0 : −p2]. This gives

a new set of 6 points and leads to a different cubic surface.
In general, this shows that the Galois group of the field where the lines

are defined acts on the space of cubic surfaces, sometimes sending one cubic
surface to a different cubic surface. Initially this confused me — I thought that
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the Galois group was supposed to permute the lines and wanted to compute a
little example where that happened. But here, it fixes 16 lines and sends the
other 11 to completely different lines.

The underlying statement that the Galois action permutes the lines is true
for rational surfaces, i.e. those cubic surfaces that are defined over Q. And for
these surfaces, it is true that each element of the Galois group simply permutes
the lines. As a corollary, the surface defined over the points P1, . . . ,P6 is not
rational.

This is hard to see because it’s not obvious how the generators F0, . . . ,F3
relate to the surface. It’s clear that if each of the generators is rational, then
the surface is rational. We study the converse relationship now.

1.2. Generic rational cubic surfaces don’t have rational generators. It
seems nontrivial to state nice conditions on the generators to guarantee that
the surface is rational. It’s even harder to state nice conditions on the initial
set of 6 points to guarantee that the surface is rational.

We will prove the following.1

Proposition 1. A generic rational cubic surface doesn’t have rational genera-
tors F0,F1,F2,F3.

In practice, this tellms that trying to enumerate rational cubic surfaces by
enumerating nice collections of 6 points and their resulting generators is prob-
ably not the right approach.

We will prove this proposition by proving the following partial contraposi-
tive.

Proposition 2. Let X be a smooth cubic surface with rational generators F0, . . . ,F3.
Suppose the minimal field of definition for the 27 lines is K . Then Gal(K) is a
subgroup of S6.

Remark 3. A similar result is due to Arav Karighattam, who had been doing
an MIT-PRIMES project with Yongyi Chen. I found Arav’s slides [Kar-slides]
very helpful when first thinking about this material. I don’t know Arav’s proof,
but I imagine it was similar.

To apply this proposition, I first need to describe the group of automor-
phisms of configurations of the 27 lines.

1.2.1. Aside from Hartshorne on configurations of lines. I summarize Remark 4.10.1
of Chapter 5 of [Hartshorne], and surrounding discussion.

By a configuration of 27 lines, we mean a set of 27 elements that I will
label E i,Fi j,G j and the incidence relations they satisfy. We do not track
the surface, or indeed the actual intersection points (or even potential triple
intersection points). The labels have the following meaning:

1I don’t know if this appears in the literature. I don’t speak algebraic geometry well enough
to casually read the literature. But this is probably known and is probably obvious for deep
reasons.
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(1) The E i are 6 mutually skew lines. E i does not meet E j for i ̸= j.
(2) The F jk are 15 lines (choose j and k from 1 to 6, and order doesn’t

matter). The line F jk meets E i if and only if i = j or i = k. The line Fi j
meets Fkℓ if and only if all of i, j,k,ℓ are distinct.

(3) The G i are 6 lines. The line G i meets E j if and only if i ̸= j. The line
G i meets F jk if and only if i = j or i = k.

Choosing the mutually skew lines E1, . . . ,E6 fixes all other labellings. Counting
the number of choices of 6 mutually skew lines shows that the total number
of possible automorphisms is equal to the size of W(E6), the Weyl group of
type E6. (Note the notation W(E6) is unrelated to the line E6). In fact, this
automorphism group is isomorphic to W(E6). This might have been proved by
Jordan in the 1800s. It’s been reproved by many people now.

Lemma 4. Let X be a cubic surface defined over a number field F. Suppose
K is the minimal extension over F where the 27 lines in F are defined. Then
Gal(K /F) embeds into the automorphism group of configurations of lines.

Proof. It is clear that Gal(K /F) acts on the lines and fixes the cubic surface. It
suffices to show that the only element that acts like the identity permutation
on the lines is the identity element in Gal(K /F).

Suppose for the sake of contradiction that σ ∈ Gal(K /F) (with σ ̸= 1) fixes
each of the 27 lines. Then the equations for each of the 27 lines are also fixed
by σ, and therefore also by the subgroup generated by σ.

But then Galois theory says that the 27 lines are defined over the fixed field
of σ, which is a smaller field than K . This contradicts the minimality of K . □

There is also a very general, much more high power result here.

Theorem 5. For a generic rational cubic surface X , the Galois group of the
field of definition of its 27 lines is all of W(E6).

This is a well-known result. (I haven’t studied the proof).

1.2.2. Proof of Propositions. Let’s now prove our propositions.
First we prove Proposition 2.

Proof. In order for the generators F0, . . . ,F3 to be rational, the defining points
P1, . . . ,P6 must be invariant as a set under Gal(Q/Q). In particular, the six
exceptional lines coming from the six points of the blowup, E1, . . . ,E6, are also
invariant as a set.

As described above, fixing the 6 skew lines determines the rest of the auto-
morphism of the configuration of 27 lines. Thus the embedding from Gal(K)
into W(E6) factors through S6 (where K is the minimal field of definition of
the lines). □

Now the proof of Proposition 1 is immediate. If the generators F0, . . . ,F1
of a smooth cubic surface X are rational, then the cubic surface is rational
and its associated Galois group is a subgroup of S6. But a generic smooth
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rational cubic surface has associated Galois group W(E6). Thus almost all
smooth rational cubic surfaces don’t have rational generators. ♦
Remark 6. The analogous statements where the base field is a number field
instead of Q are also true (with rational replaced by K-rational), with essen-
tially identical proofs. We didn’t use rationality anywhere, and the high pow-
ered theorem is generic.

1.3. Computing the surface. We have now claimed that the surface isn’t
rational for Galois reasons. Let’s actually compute the equation for the surface
we get from blowing up the six points

[1 : 1 : 0] [1 :−1 : 0] [1 : 0 :
p

2]
[1 : 0 :−1] [0 : 1 : 1] [1 : 1 : 1].

A general cubic surface in P3 will be the zero set of a homogenous cubic poly-
nomial of the form ∑

i, j,k,ℓ
i+ j+k+ℓ=3

ai jkℓX iY jZkWℓ.

We will show that it’s the surface defined by
X2W + (1

2

p
2−2)XYW + (1−

p
2)X ZW + (

p
2−3)XW2

−Y 2Z+Y Z2 + (1
2

p
2− 7

2 )Y ZW − 1
2

p
2Y W2

+ (3
2 − 1

2

p
2)Z2W + (2

p
2−4)ZW2 −W3 = 0.

This is actually an exercise in understanding what things are and basic lin-
ear algebra — but what isn’t?

As computed previously, the resulting four generators are
F0 = x3 +−xy2 + (−1

2

p
2+ 3

2 )xyz+ (1
2

p
2− 3

2 )xz2

+ (−1
2

p
2+ 1

2 )yz2 + (1
2

p
2− 1

2 )z3

F1 = x2 y+−xyz+−y3 + yz2

F2 = x2z+ (1
2

p
2−2)xyz+ (−1

2

p
2+1)xz2 + 1

2

p
2yz2 +−1

2

p
2z3

F3 = y2z+−yz2.

Our strategy to determine a defining cubic homogeneous polynomial for this
surface is very basic: we’re going to generate lots of random points that must
sit on this surface.

In slightly more detail: generate lots of points Q = (X : Y : Z), compute the
resulting points P = (F1(Q) : F2(Q) : F3(Q) : F4(Q)) that lie on our surface, think
of the monomials X iY jZkWℓ as a basis and evaluate each of these points along
our basis to build our matrix. If we chose 19 points in general position, this
would uniquely determine our system. But I don’t want to worry about general
position, so instead I’ll just compute 30 or so. (This is enough in practice). The
resulting matrix should have rank 19, and the kernel should have rank 1. The
kernel will then give our surface.

I do this in sage.
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First we recreate the right kernel from before.

1 K.<sqrt2> = NumberField(x^2 - 2, embedding=1)

2 print(n(sqrt2))

3 # 1.41421...

4 mat = [

5 [1, 1, 0, 1, 0, 0, 1, 0, 0, 0],

6 [1, -1, 0, 1, 0, 0, -1, 0, 0, 0],

7 [1, 0, sqrt2, 0, 0, 2, 0, 0, 0, 2 * sqrt2],

8 [1, 0, -1, 0, 0, 1, 0, 0, 0, -1],

9 [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],

10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

11 ]

12 A = matrix(K, mat)

13 rk = A.right_kernel()

14 fmat = rk.matrix()

Instead of working with polynomials, we’ll use vectors in increasing dictio-
nary order. We need both P3 indices (using X < Y < Z < W) and P2 indices
(using X < Y < Z). I make both of these orderings in python using python’s
itertools. (This is actually very straightforward, but I know that itertools
looks like programming nonsense from the outside).

1 import itertools

2 indices = list(

3 index for index in

4 itertools.product(range(4), repeat=4)

5 if sum(index) == 3

6 )

7 indices.reverse()

8

9 findices = list(

10 index for index in

11 itertools.product(range(4), repeat=3)

12 if sum(index) == 3

13 )

14 findices.reverse()

Now findices is the list

(3,0,0), (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3),

which are the powers of X ,Y , Z respectively in increasing dictionary order.
Similarly, indices is the list of 4-tuples in increasing dictionary order,

(3,0,0,0), (2,1,0,0), . . . , (0,0,1,2), (0,0,0,3).

Given a point (X : Y : Z) ∈P2, I evaluate each of the 10 monomials at this point
and store them in a vector.
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1 def p2_to_f_vector_input(x, y, z):

2 if x == 0 and y == 0 and z == 0:

3 raise ValueError("All cannot be zero")

4 ret = []

5 for i, j, k in findices:

6 ret.append([x^i * y^j * z^k])

7 return matrix(K, ret)

8

9 # Example - evaluate at (1 : 2 : 3)

10 v = p2_to_f_vector_input(1, 2, 3)

11 # (1, 2, 3, 4, 6, 9, 8, 12, 18, 27) # (as a 2d matrix)

One can check by hand that the monomials, in order, at the point (1 : 2 : 3)
yield the vector

(1,2,3,4,6,9,8,12,18,27).

For example, X3 = 13 = 1, X2Y = 12 ·2= 2, and so on. This is the vector v above,
which I include only for demonstration.

The value of the generators [F0 : F1 : F2 : F3] at (1 : 2 : 3) is then given by
fmat · v in my notation above. (It’s just matrix multiplication, and I’m being
pedantic because I had to think it through for a second).

Given a point [X : Y : Z : W] ∈ P3, I similarly want to evaluate it at each
of the 20 monomials there. I write this snippet to work with the outputs of
p2_to_f_vector_input, so it will take in a matrix.

1 def p3_to_row(p3mat):

2 x, y, z, w = p3mat.transpose()[0]

3 ret = []

4 for i, j, k, ell in indices:

5 ret.append(x^i * y^j * z^k * w^ell)

6 return ret

Finally, we assemble it all together. I generate 30 random points in P2,
compute the values of Fi at those points, build the associated matrix, and check
that its rank is 19.

1 rows = []

2 for _ in range(30):

3 rows.append(p3_to_row(fmat *

p2_to_f_vector_input(randint(1,20), randint(1,20),

randint(1,20))))

,→
,→

4 smat = matrix(K, rows)

5 print(smat.rank())

6 # 19 on this run --- note there is randomness!

7 # You could in principle get unlucky.

The cubic surface is encoded in the (right) kernel of this matrix.
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1 print(smat.right_kernel())

Here, the right kernel is one-dimensional and generated by
(0,0,0,1,0,0, 1

2

p
2−2,0,−

p
2+1,

p
2−3,0,−1,0,1, 1

2

p
2− 7

2 ,− 1
2

p
2,0,− 1

2

p
2+ 3

2 ,2
p

2−4,−1).

This is exactly the claimed equation:
X2W + (1

2

p
2−2)XYW + (1−

p
2)X ZW + (

p
2−3)XW2

−Y 2Z+Y Z2 + (1
2

p
2− 7

2 )Y ZW − 1
2

p
2Y W2

+ (3
2 − 1

2

p
2)Z2W + (2

p
2−4)ZW2 −W3 = 0.

We confirm that this isn’t rational.

2. Second example

Let’s use the 6 points P1, . . . ,P6 given by
[1 : 1 : 0] [1 :−1 : 0] [1 : 0 :

p
2]

[1 : 0 :−p2] [0 : 1 : 1] [1 : 1 : 1].
The set of these points are fixed under the action of the Galois group of the
defining field Q(

p
2). Analogous code (changing only the line of the matrix

corresponding to P4) gives the generators
F0 = x3 +−xy2 + 1

2 xyz+−1
2 xz2

F1 = x2 y+−xyz+−y3 + yz2

F2 = x2z+−xyz+ 1
2 yz2 +−1

2 z3

F3 = y2z+−yz2.

The map P2 −→ [F0 : F1 : F2 : F3] ⊂ P3 is now obviously birational (as is the
extended map from the blowup at 6 points).

The induced automorphism on the configuration of lines from σ :
p

2 7→ −p2
is exactly the configuration change that comes from transposing P3 = [1 : 0 :

p
2]

and P4 = [1 : 0 : −p2] (with a corresponding transformation of the other lines
coming from swapping the 3 and 4 indices). This corresponds to an obvious
embedding of C2 into S27.

Continuing as above (generating 30 random points, assembling the matrix,
verifying that the rank is 19, and then taking a basis for the kernel) shows that
the surface is given by

X2W − XYW − X ZW − XW2 −Y 2Z+Y Z2

− 5
2Y ZW − 1

2Y W2 +Z2W −ZW2 − 3
4W3 = 0.

This is a rational surface.
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