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1. Bounds on partial sums from the functional equation

If f is a weight k holomorphic cuspform with expansion f(z) =
∑

n≥1 a(n)q
n,

then we expect the partial sums to satisfy

Sf (X) :=
∑
n≤X

a(n) ≪ X
k−1
2

+ 1
4
+ϵ

for any ϵ > 0. We do not know how to prove this, but this is true on average.
We expect this to also hold when f is of half integral weight — though

we are further from proving it. There is less written about the partial sums
in the half integral weight case.

In this note, I want to investigate what can be said about the partial sums
Sf (X) using the most basic sorts of information available: the functional
equation and fundamental results about the coefficients.

1.1. Landau’s Method, via Chandrasekharan and Narasimhan. The
approach I use here is entirely based on applying “an old method of Lan-
dau”, where one chooses combinatorial mixings of smoothed partial sums to
approximate the sums [5, 6]. This was advanced by Chandrasekharan and
Narasimhan [1].

In 2018, Takashi Taniguchi, Frank Thorne, and I revisited these argu-
ments and made the primary application as uniform “in the shape of the
functional equation” as possible in our paper Uniform bounds for lattice
point counting and partial sums of zeta functions.1 I’ll refer to our paper by
LDTT17, and the notation here is consistent with our paper (which is mostly
consistent with the 1962 paper of Chandrasekharan and Narasimhan).

Applying this argument requires a distracting amount of notation. Specif-
ically, we need

1. Two Dirichlet series ϕ(s) and ψ(s), denoted by

ϕ(s) =
∑
n≥1

a(n)

λsn
, ψ(s) =

∑
n≥1

b(n)

µsn
,
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where the sequences λn and µn are strictly increasing sequences of
real numbers tending to ∞. (In practice, they are n, possibly mul-
tiplied by a constant that encapsulates the conductor of the series).

2. The Dirichlet series should satisfy a function equation of the form

∆(s)ϕ(s) = ∆(δ − s)ψ(δ − s)

for some δ > 0 and collected gamma factors

∆(s) =
N∏
ν=1

Γ(ανs+ βν).

Here, each αν > 0 and each βν ∈ C.
3. In terms of the gamma factor, let A denote

∑N
ν=1 αν . We require

A ≥ 1 here. In other places, many people call 2A the degree of the
Dirichlet series.

4. I assume that the Dirichlet series converge somewhere, and that
there really is some meromorphic function that each Dirichlet series
describes a part of. I do not bother to make this formal here —
instead note that for Dirichlet series and L-functions of interest, this
is true.

5. Today I assume that the Dirichlet series have no poles. Thus this
applies to Dirichlet series from holomorphic cusp forms, but not to
standard Epstein zeta functions. This has the effect of removing
statements involving main terms.

6. Denote the partial sum by

Aϕ(X) =
∑
λn≤X

a(n).

7. We require a bound on the partial sums of the coefficients of the
dual Dirichlet series, which we take to be of the form∑

µn≤Z
|b(n)| ≤ Bψ(Z) = CψZ

r logr
′
(C ′

ψZ)

for some positive constants Cψ, C
′
ψ, any r′ ≥ 0, and r > δ

2 + 1
4A .

(We require the latter for purely techical reasons, but which is true
in our applications today).

With this notation in place, we can now state the general theorem of
LDTT17, Theorem 4.

Theorem 1 (Theorem 4 of LDTT17, simplified). With the above notation,
we have

Aϕ(X) ≪
∑

X≤λn≤X+O(y)

|a(n)|+X
δ
2
− 1

4A z−
δ
2
− 1

4ABψ(z),

for every η ≥ − 1
2A , and where

y = X1− 1
2A

−η, z = X2Aη.
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I remark that one can track what precisely the implicit constants depend
on (indeed, this was the primary object of LDTT17), but I ignore that here.

In applications, one optimizes over η. It is now clear that there are two
ingredients necessary to use this theorem: you need to have some under-
standing of the (absolute) partial sums of the coefficients (represented by
the short sum

∑
λn
|a(n)| and the (absolute) partial sum of the dual coeffi-

cients (represented by Bψ(z)).

1.2. Applications to partial sums of cuspform coefficients. We now
apply this to the partial sums of coefficients of

1. full integral weight cuspforms, and
2. half integral weight cuspforms.

For both, we use f(z) =
∑

n≥1 a(n)q
n and take the weight to be k. Note:

this differs from some authors who use k for full integral weight and κ = k/2
or κ = k

2 − 1 or some other notation for half integral weight. I prefer unified
notation.

1.2.1. Full Integral Weight. Notationally, we have ϕ(s) = N
s
2L(s, f), where

N is the conductor of the functional equation, and L(s, f) is the standard
(unweighted) L-function

L(s, f) =
∑
n≥1

a(n)

ns
.

NOTE: we includes the conductor with the n−s, getting λ−sn instead. This
has no effect on the asymptotics aside from making the implicit constants
depend on the conductor. We ignore the conductor from now on.

The functional equation for L(s, f) looks like

N s/2L(s, f)Γ(s) = εN (k−s)/2L(k − s, f̃)Γ(k − s),

where f̃ is the conjugate of f and |ε| = 1. (We also allow the dual coefficients
b(n) to absorb ε, and we no longer consider it).

In terms of the notation above, we have δ = k and A = 1. To apply
the theorem, we study short interval bounds for the (absolute values of the)
coefficients a(n) and bounds for the (absolute values of the) dual coefficients
b(n).

As we are dealing with full integral weight holomorphic cuspforms, we
have Deligne’s bound. This implies that

|a(n)| ≪ n
k−1
2

+ϵ.

Thus we have the trivial bound∑
X<λn<X+O(y)

|a(n)| ≪ X
k−1
2

+ϵy (1)
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as long as y ≪ X1−ϵ. For the dual sum, we can apply the trivial bound∑
µn≤Z

|b(n)| ≪ Z
k−1
2

+ϵZ = Z
k+1
2

+ϵ. (2)

Both of these bounds follow by bounding each summand by the largest
summand in the range, and then multiplying by the number of summands.

Applying the theorem, we have

Aϕ(X) ≪ X
k−1
2

+ϵy +X
k
2
− 1

4 z−
k
2
− 1

4 z
k+1
2

+ϵ

≪ X
k−1
2

+1− 1
2
−η+ϵ +X

k−1
2

+ 1
4 z

1
4
+ϵ

≪ X
k−1
2

+ 1
2
−η+ϵ +X

k−1
2

+ 1
4
+ η

2
+ϵ,

which is balanced when η = 1
6 . This gives the bound

Aϕ(X) ≪ X
k−1
2

+ 1
2
− 1

6
+ϵ = X

k−1
2

+ 1
3
+ϵ.

To reference later, we codify this.

Proposition 2. For full integral weight k and notation as above, Aϕ(X) ≪
X

k−1
2

+ 1
3
+ϵ for any ϵ > 0.

Remarks on improving this bound: morally, this is approximately
an ϵ factor away from being state of the art. (Actually, working very hard,
it is possible to save a fractional log power — but I focus on polynomial
sized error terms today).

Hafner and Ivić [3] showed that one can remove the ϵ. They did this by
improving (1), specifically by removing the ϵ there. And to do this, they
used a clever argument applying multiplicativity of the Fourier coefficients
(hence applying only to Hecke eigenforms, which isn’t really a restriction).

It is easy to prove a version of the dual bound, (2), without any epsilon
factor. We use Cauchy-Schwarz and the Rankin-Selberg result2∑

n≤Z
|b(n)|2 = cZk−1+1 +O(Zk−1+ 3

5 )

for an explicit but unimportant constant c. Then Cauchy-Schwarz implies
that ∑

n≤Z
|b(n)| ≪

( ∑
µn≤Z

|b(n)|2
) 1

2
(
Z
) 1

2 ≪ Z
k+1
2 .

Stated differently, Rankin-Selberg shows that on average, there is no addi-
tional ϵ factor in the coefficient bound, and the dual bound we require is
sufficiently long to only worry about long averages.

2We obtain this result by applying Landau’s method (or CN or LDTT17) to the Rankin-
Selberg L-function.
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Remark 3. After removing the ϵ, this bound for the dual sum Bψ(Z) =∑
|b(n)| is essentially correct. Similarly, after removing the ϵ, the bound for

the nondual short sum is essentially correct. It would be *very hard* to
improve the overall bound by attempting to sharpen the argument here via
stronger verstions of either (1) or (2). The reason is that the absolute values
obscure any further cancellation.

Remark 4. It is natural to ask whether the absolute values really need to
be there. In LDTT17, the absolute value in (1) comes from Lemma 7. More
precisely, the actual quantity to be bounded is

ℓ∑
ν=0

(−1)ℓ−ν
(
ℓ

ν

) ∑
λn∈(X,X+νy]

a(n)(X + νy − λn)
ℓ,

for some possibly rather large ℓ. In the paper, we bound this byOℓ(y
ℓ
∑

X≤λn≤X+Oℓ(y)
|a(n)|),

but this is obviously potentially lossy. Observe that each of the ℓ summands
require short interval bounds of weighted sums of a(n), which are in theory
reasonably attainable. I think this is an untrod line of research.

1.2.2. Half Integral Weight. Notationally we have essentially the same setup,

except that now the “dual” object f̃ might be (in general) a half integral

weight modular form on a different space. (Namely, the character of f̃ might
be changed by a quadratic twist, and the level might raise appropriately).
In terms of the functional equation, this affects the conductor; but as with
the full integral weight case this doesn’t actually change anything.

In practice, we have a functionally identical functional equation with δ =
k and A = 1. But we don’t have Deligne’s bound anymore; this isn’t known
for half integral weight coefficients. (We do have the same Rankin-Selberg
bound). We have instead the much weaker bound [2, 4]

|a(n)| ≪ n
k
2
− 2

7
+ϵ ≪ n

k−1
2

+ 3
14

+ϵ.

(This is usually written in the first form, but I prefer the latter as it shows
that the bound is 3/14 larger than what is probably true).

As with the full integral case, the argument of Rankin-Selberg shows that∑
n≤Z

|b(n)| ≪ Z
k+1
2 .

Now we ask what we can say about the short sum∑
X<λn<X+O(y)

|a(n)|?

There are two obvious ways to try to bound this sum. Let’s try them
both.

Individual Bound: The “trivial” bound, using the 3/14 bound, is∑
X<λn<X+O(y)

|a(n)| ≪ X
k−1
2

+ 3
14

+ϵy.
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(This will hold whenever y ≪ X1−ϵ).
Long-average bound: We apply Cauchy-Schwarz and the Rankin-Selberg

bound. Then we find that∑
X<λn<X+O(y)

|a(n)| ≪
( ∑
X<λn<X+O(y)

|a(n)|2
) 1

2
( ∑
X<λn<X+O(y)

1
) 1

2

≪
( ∑
X<λn<X+O(y)

|a(n)|2
) 1

2
y

1
2 .

We bound the first term simply, through∑
X<λn<X+O(y)

|a(n)|2 =
∑

λn<X+O(y)

|a(n)|2 −
∑
λn<X

|a(n)|2

= c(X +O(y))k − cXk +O((X + y)k−1+ 3
5 ).

= O(Xk−1+ 3
5 ).

In this last bound, I assume y ≪
√
X, which is true in our bounds. Inserting

above, we have ∑
X<λn<X+O(y)

|a(n)| ≪
( ∑
X<λn<X+O(y)

|a(n)|2
) 1

2
y

1
2

≪ X
k−1
2

+ 3
10 y

1
2 .

Applying the Theorem
We now apply the theorem to both. Applying the individual 3/14 esti-

mate, the theorem gives

Aϕ(X) ≪ X
k−1
2

+ 3
14

+ϵy +X
k−1
2

+ 1
4
+ η

2

≪ X
k−1
2

+ 3
14

+ϵ+ 1
2
−η +X

k−1
2

+ 1
4
+ η

2 ,

which is balanced when X
1
4
+ 3

14 = X
3
2
η, or when η = 13

42 . This gives the
bound

Aϕ(X) ≪ X
k−1
2

+ 1
4
+ 13

84
+ϵ ≪ X

k−1
2

+0.4047...+ϵ.

Applying the CS+RS estimate shows

Aϕ(X) ≪ X
k−1
2

+ 3
10 y

1
2 +X

k−1
2

+ 1
4
+ η

2

≪ X
k−1
2

+ 3
10

+ 1
4
− η

2 +X
k−1
2

+ 1
4
+ η

2 ,

which is balanced when η = 3
10 (which is less than 13/42, so we know this

bound is better). This gives the bound

Aϕ(X) ≪ X
k−1
2

+ 1
4
+ 3

20 ≪ X
k−1
2

+ 2
5 .

We codify this as well.

Proposition 5. For half integral weight k and notation as above, Aϕ(X) ≪
X

k−1
2

+ 2
5 .
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I’ll end with two small remarks.

Remark 6. The 3/14 estimate for coefficients is *just barely* too large in
comparison to the Rankin-Selberg estimate.

I only included the inferior local-coefficient bound to indicate just how
close it is.

Remark 7. In contrast to the full integral weight case, there *is* hope of
improving the overall bound by improving the short interval estimate for
half intergral weight forms. But in this application, we are studying short

intervals of the form [X,X + y] where y ≈ X
1
2
− 3

10 = X
1
5 , which is *very

short*.
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