
Rigorously computing Maass forms

David Lowry-Duda

February 2023

Concordia University

QVNTS



This is a project I’ve begun since joining the Simons Collaboration on

Arithmetic Geometry, Number Theory, and Computation. I’ve collected a

large amount of data associated to Maass forms, but there remains a lot

to compute and a lot to prove.

In this talk, I’ll touch on work done with several collaborators. In

particular, I’ve been working with Andrew Booker (Bristol), Andrei

Seymour-Howell (Bristol), and Drew Sutherland (MIT) on computational

aspects; and with Min Lee (Bristol) on theoretical aspects.

I should also note that I’ve had the benefit of several helpful

conversations with David Farmer (AIM), Sally Koutsoliotas (Bucknell),

Stefan Lemurell (Chalmers), Fredrik Strömberg (Nottingham), and the

rest of the Simons Collaboration.
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I’d like to thank Chantal

and the organizers for inviting me.

One of my first

papers was with Chantal, coming

out of her project group at

the 2014 Arizona Winter School!
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Motivation and Context
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The geometry of a space strongly influences the functions that live on

that space. For a familiar example, consider drums.

The shape of a drumhead affects

the sounds that a can make. The

frequencies at which a drumhead

can vibrate are determined

by the Helmholtz equation,{
∆u + λu = 0,

u∂D = 0.

Different drums admit different

solutions, having different tones.

Aside: it is also interesting to ask,

Can one can hear the shape of a drum?

Answer: no!
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Maass forms are solutions to a Laplacian differential equation with a

certain boundary (cusp) condition on modular surfaces, and are as

fundamental to modular forms as sound waves are to music.

But unlike sound waves or drum tones, Maass forms are not simple.

They’re extremely mysterious and enigmatic.

We will see that Maass forms extend the classical theory of Dirichlet

series with Euler products and the theory of classical holomorphic

modular forms.

Personally, I frequently use spectral theory and poor understanding of

Maass forms is the most common major obstruction I face.
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For this talk, a Maass form will be a weight 0 Maass cuspform on a

congruence subgroup of SL(2,Z). Specifically, let Γ < SL(2,Z) be a

congruence subgroup. The modular surface X = Γ\H is a finite

non-compact surface. The Laplacian ∆ on this surface is

∆ = −y2(∂2/∂x2 + ∂2/∂y2).

We call a function f : H −→ C a Maass cuspform if

1. f is real analytic, f ∈ C∞(H),

2. f is an eigenfunction of the Laplacian, ∆f = λf ,

3. f is automorphic, f (γz) = f (z) for all γ ∈ Γ,

4. f is square integrable, f ∈ L2(X ), and

5. f vanishes at all the cusps of X .
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History

We call these Maass forms because Maass was the first to look for them.

Maass was trying to extend Siegel’s work on theta functions and found

some evidence that an unknown family of functions might exist.

Rephrasing to look more like what Maass wrote (and more like the

Helmholtz equations for drums), Maass looked for solutions to
∆f − λf = 0,

f (γz) = f (z),

f ∈ L2(Γ\H).

Maass showed that for any fixed λ, there are at most finitely many

solutions, but he was unsuccessful in finding any outside of very

particular constructions (essentially coming from Hecke characters).
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History

In 1956, Selberg developed what we now call the Selberg trace formula

and the theory of real analytic Eisenstein series in order to prove the

general existence of Maass forms on SL(2,Z).

This has had many far reaching implications!

The Selberg trace formula was generalized to the Arthur-Selberg trace

formula, used by Jacquet, Langlands, and many others to prove special

cases of Langlands functoriality.

But so far, no one has ever exactly computed a Maass form on SL(2,Z).
It could be that they’re uncomputable!
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Before describing how we’re going to try to compute Maass forms, I’d

like to give a bit more context.

Selberg famously conjectured that (for congruence subgroups Γ) the

eigenvalue λ is either 0 or λ ≥ 1
4 . An eigenvalue λ ∈ (0, 1

4 ) would be

called exceptional, though we’ve never seen one.

This Selberg Eigenvalue Conjecture (SEC) is analogous to the

Ramanujan–Petersson Conjecture (RPC). We describe this now.
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Given a classical weight k Hecke holomorphic modular cusp form

g(z) =
∑
n≥1

a(n)n
k−1
2 e2πinz ,

one can associate an L-function

L(s, g) =
∑
n≥1

a(n)

ns
=

∏
p

Lp(s),

where Lp(s) is (generically) of the form

Lp(s) = (1− βp,1p
−s)−1(1− βp,2p

−s)−1.

The RPC asserts that |βp,j | = 1, or equivalently that logp|βp,j | = 0.

For holomorphic cusp forms, the RPC is known and follows from

Deligne’s celebrated proof [Del71].
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To each Maass form, there is also an associated L-function. In its

completed form, the L-function associated to a Maass form f has the

shape

Λ(s, f ) = L∞(s)
∏
p

Lp(s),

where (for generic p)

Lp(s) = (1− αp,1p
−s)−1(1− αp,2p

−s)−1

L∞(s) = ΓR(s − µ∞,1)ΓR(s − µ∞,2).

Here, L∞(s) is the “factor at ∞” and consists of a pair of gamma

functions ΓR(s) := π−s/2Γ(s/2).

The parameters µ∞,j are closely related to the eigenvalues. The SEC

states that Reµ∞,j = 0 while RPC states that logp|αp,j | = 0.

The best progress towards these conjectures for Maass forms are due to

Kim and Sarnak, who showed that |Reα∞,j | and
∣∣logp|αp,j |

∣∣ are bounded

above by 7
64 [KS03].
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I first began to investigate Maass forms because they kept on appearing

in my number theoretic results. Continuing to use a weight k

holomorphic cuspform

g(z) =
∑
n≥1

a(n)n
k−1
2 e2πinz ,

we can look at the convolution L-function

L(s, g ⊗ g) = ζ(2s)
∑
n≥1

a(n)2

ns
.

This has a functional equation, Euler product, meromorphic continuation

— it’s a very natural L-function.

The convolution series

Dh(s) =
∑
n≥1

a(n)a(n + h)

ns

doesn’t have a functional equation or Euler product, but it does have a

meromorphic continuation to C with poles at 1
2 ± itj for each eigenvalue

λj =
1
4 + t2j of a Maass form on Γ(N).
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Similar results hold even for objects that seem of independent arithmetic

interest. Let d(n) =
∑

ℓ|n 1 denote the standard divisor function. Then

one can also show that ∑
n≥1

d(n)d(n + h)

ns

has meromorphic continuation to C with poles coming from each

eigenvalue of Maass forms on SL(2,Z).
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I’m interested in the Gauss circle problem and its generalizations. This

concerns understanding the discrepancy between the number of lattice

points S2(R) in a circle of radius
√
R and the “obvious” main term πR,

P2(R) = S2(R)− πR.

In [HKLDW21], Hulse, Kuan, Walker, and I looked at the Laplace

transform of P2(R)
2 and found that∫ ∞

0

P2(t)
2e−t/Xdt =cX

3
2 + c1X +

∑
ctjX

1
2+itj

+
∑

cρX
ρ + O(X

1
4+ϵ).

Here, 1
2 + itj again comes from Maass forms, and ρ comes from zeros of

ζ(2s). Understanding P2(R) is hard because it is coupled to the

distribution of Maass eigenvalues.

A huge number of Diophantine problems and problems in arithmetic are

controlled by the distribution of Maass forms.
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Spectral expansion

One reason why is that each function g ∈ L2(Γ\H) has a spectral

expansion of the shape

g(z) =
∑

f Maass cuspform

⟨g , f ⟩f (z)

+
∑

Eisenstein

∫
⟨g ,E (·, u)⟩E (z , u)du

+ (a constant).

Automorphic forms appear all over, and their analytic behavior can be

understood in terms of their spectra.
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Computing Maass forms
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Our goal is to rigorously compute Maass forms. The problem is that

everything associated to a generic Maass form is transcendental and one

will never exactly compute a Maass form.

Each Maass form discussed today has an expansion

f (z) =
∑
n≥1

a(m)√
m

Wir (2πmy)e(2πmx),

This is a (real) analytic function on Γ0(N)\H for some squarefree N, and

it is an eigenfunction of a Laplacian with eigenvalue λ = 1
4 + r2.

By “compute a Maass form”, we mean to rigorously estimate the

eigenvalue λ (or equivalently the spectral parameter r) and to rigorously

estimate the coefficients a(m).
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Maass forms in the LMFDB

The L-function and modular form database (https://LMFDB.org) is an

online database of L-functions, modular forms, abelian varieties, and their

relationships.

There is currently heuristic data for thousands of Maass forms in the

LMFDB, available through the portal

https://www.lmfdb.org/ModularForm/GL2/Q/Maass/.

In the next couple of months, I will upload more data, with rigorous

results.
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Heuristically computing Maass

forms
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We base our method for computation on an algorithm Hejhal developed

in the 1970s to find a Maass form.

In my experience, Hejhal’s algorithm is faster and more versatile

compared to earlier methods. On the other hand, Hejhal’s algorithm is

not rigorous (although in practice it always produces reliable results).

We’ll return to the topic of rigorous evaluation later.

The algorithm that Hejhal described apply for the computation of Maass

forms for cofinite Fuchsian groups Γ such that Γ\H has exactly one cusp,

but I’ll also describe the necessary adjustments for when Γ\H has

multiple cusps, as is the case for general congruence subgroups Γ.
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Maass form Fourier expansion

It is easiest to first describe using Hejhal’s algorithm to compute a

“known” Maass newform. Let us fix a Maass form f with eigenvalue

λ = 1
4 + R2. Then f has a Fourier expansion

f (z) =
∑
n ̸=0

c(n)
√
y
WiR(2π|n|y)√

n
e(nx).

Here and later, we use the notation e(nx) = e2πinx and

WiR(u) = eπR/2
√
uKiR(u), where Kα(u) is the modified K -Bessel

function of the second kind.

In this normalization, WiR(u) is an oscillating function of u for

0 < u ≲ R with amplitude roughly of size 1, and then it decays

exponentially for u ≳ R.

Thus we want to understand R and the coefficients c(n).
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The coefficients c(n) satisfy the trivial Hecke bound c(n) = O(
√
n)

(better bounds are known). We can further assume that c(1) = 1. Let us

fix a desired error bound 10−D . Then there is a decreasing function

M(y) = M(y ,R) such that

f (x + iy) =
∑

|n|≤M(y)

c(n)
√
y
WiR(2π|n|y)√

n
e(nx) + [[10−D ]],

(where we use [[10−D ]] to mean a quantity of absolute value strictly less

than 10−D).

We can think of f (x + iy) as a finite Fourier series in x up to a small,

controlled error.
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f (x + iy) =
∑

|n|≤M(y)

c(n)
√
y
WiR(2π|n|y)√

n
e(nx) + [[10−D ]].

Fix a set of equally spaced points along a horocycle

{zm = xm + iY : xm =
1

2Q
(m − 1

2 ), 1− Q ≤ m ≤ Q}

(with Q > M(Y )). If we think of evaluating f at these points, we are

almost performing a discrete Fourier transform. Inverting this transform,

we see that

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

f (zm)e(−nxm) + [[10−D ]].

For fixed R and Y , we can vary n to get essentially a linear system in the

coefficients c(n) — but this system is currently a tautology.
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We make this system non-tautological by using the automorphy of f ,

that f (γz) = z for all γ ∈ Γ. To accomplish this, for the points

zm = xm + iY in our horocycle, we choose Y small enough so that part

of the horocycle will be outside a fixed fundamental domain for Γ\H.

Then we pullback each zm to a point z∗m in the fundamental domain. The

result is that

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

f (zm)e(−nxm) + [[10−D ]].

becomes

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

f (z∗m)e(−nxm) + [[10−D ]].

If instead of a congruence subgroup, we were considering SL(2,Z)\H, we

would be done. We could expand each f (z∗m) in its own (essentially

finite) Fourier series, repeat for several n, and get a linear system with

unknowns c(n). This is the classical algorithm of Hejhal.
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Expansions at all the cusps

But when Γ\H has multiple cusps, the resulting linear system is typically

very poorly-conditioned. Heuristically this is because several points

zm = xm + iY might still be in the fundamental domain, and thus

f (zm) = f (z∗m) for these points — the system is insufficiently mixed by

the modularity.

To resolve this, we work not just with the Fourier expansion of f at ∞.

We instead work simultaneously with the Fourier expansions fℓ at each

cusp ℓ. That is, in terms of the Fourier expansions fℓ(z) = f (σℓz), where

σℓ∞ = ℓ is a cusp normalization map.

For each point z∗ in the fundamental domain, we identify the nearest

cusp ℓ = ℓ(z∗). (By nearest, we mean the cusp with respect to which z∗

has the greatest height). Then we represent the value f (z∗) in terms of

the Fourier expansion fℓ.
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In order to set up the extended system, we enlarge our linear system to

include horocycles associated to the expansion at each cusp and solve for

all expansions simultaneously. For each cusp j , we have an expansion

fj(z) =
∑
n ̸=0

cj(n)
√
y
WiR(2π|n|y)√

n
e(nx)

and we can set up the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

fj(zm)e(−nxm) + [[10−D ]]

as before.
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We now have the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

fj(zm)e(−nxm) + [[10−D ]].

Let zmj = σjzm, so that fj(zm) = f (zmj), and let z∗mj be the pullback of

zmj to the fundamental domain, expressed in coordinates of the nearest

cusp ℓ. Automorphy implies that f (zmj) = fℓ(z
∗
mj), and in total

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

fℓ(z
∗
mj)e(−nxm) + [[10−D ]].
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Lemma
It is possible to choose Y small enough such that z∗mj ̸= zmj for all j and

m. Further, the imaginary parts of each resulting z∗mj are bounded below

by a computable constant Y0 (which depends on the level of the

congruence subgroup).

It is the nontrivial mixing coming from fj(zm) and fℓ(z
∗
mj) that gives a

non-tautological system, allowing us to solve for the Fourier coefficients

in the linear system.
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Solving for the coefficients

Summarizing so far: given an input eigenvalue λ = 1
4 +R2, we can set up

the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑
1−Q=m

fℓ(z
∗
mj)e(−nxm) + [[10−D ]].

If we choose the Y in the horocycles as in the Lemma, then

Im(z∗mj) > Y0 for all m and j , so we can truncate each Fourier series fℓ on

the right at the same point M0 = M(Y0) while guaranteeing a uniform

error bound. Expanding each finite Fourier series and collecting

coefficients, we get that

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

∑
cusps ℓ

∑
1≤|k|≤M0

cj(k)Vnkjℓ + 2[[10−D ]]

for complicated-but-computable coefficients Vnkjℓ (that are just

complicated combinations of K -Bessel functions and exponentials).

Considering this for all |n| ≤ M0 gives a linear system that can be solved.
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Structurally, we have constructed a homogeneous linear system Tc⃗ = 0

for a computable matrix T = T (R,Y ), consisting mostly of linear

combinations of Bessel functions, and an unknown vector of coefficients

c⃗ .

We can use the assumption c(1) = 1 to de-homogenize the linear system

and to facilitate solving for the coefficients.

It should be noted that a priori, it is not obvious that the resulting linear

system will be well-conditioned. This would be a necessary ingredient to

conclude that this algorithm would always succeed, but this is unknown.

However, in practice it seems that whenever we choose Y small enough

so that zmj ̸= z∗mj for all m and j , the resulting system is solvable and

gives approximately D correct digits of accuracy for the coefficients.
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We have demonstrated that we can heuristically determine the

coefficients of a Maass form with a known eigenvalue by constructing a

homogeneous linear system V c⃗ = 0.

But in practice, we don’t know the eigenvalue R. Hejhal also gave a

method to try to find R.

It is an interesting fact that we don’t know a good way to strongly

approximate R without simultaneously finding strong approximations for

the coefficients.
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Abstractly, we can think of our linear system as being of the form

T (r )⃗a ≈ 0,

where a⃗ =
(
a(k)

)T
1≤k≤L

and we feed in r as an input.

When we use a(1) = 1 to dehomogenize the system, we remove first

column of the system of equations (corresponding to a(1)) and separate

the first row as an auxiliary equation. Explicitly (and abusing notation),

we have

T (r )⃗a ≈ b(r),

where now a⃗ =
(
a(k)

)T
2≤k≤L

and b(r) are explicit in terms of the

coefficients of a(1) = 1.

The auxiliary equation from the first row can be written

c(r) := a⃗ · v(r) + w(r) ≈ 0.
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Iteration

T (r )⃗a ≈ b(r), (1)

c(r) := a⃗ · v(r) + w(r) ≈ 0. (2)

Note that the matrix T (r) and components b(r), v(r), and w(r) depend

on the (a priori unknown) parameter r . One form of Hejhal’s algorithm is

to guess an initial r , solve (1) to get approximations to the coefficients

a(k), and then iterate while trying to minimize the error term in the

auxiliary equation (2).

One part of making this rigorous is to find precise error bounds in the

linear system (1) and the first coefficient auxiliary equation (2), including

the error coming from truncation.
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Rigorously computing Maass

forms
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The first (and only) rigorously computed Maass forms were done by

Booker, Strömbergsson, and Venkatesh in 2006 [BSV06]. There, they

compute the first dozen or so Maass forms on SL(2,Z) to over a

thousand digits of precision.

They probed the algebraic and transcendental properties of the

coefficients and the eigenvalue — they seem transcendental.

But their method is specialized to SL(2,Z) and is computationally

expensive.

The dream is to have something that is both as rapidly computable as

Hejhal’s algorithm and rigorous. For this, we need an additional

ingredient.
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The key difference from my original efforts to find Maass forms has been

the unexpectedly strong success of a method to find low-precision

estimates for the eigenvalues λ using an explicit, computational form of

Selberg’s trace formula. This is the topic of Andrei Seymour-Howell’s

PhD thesis.1

The Selberg Trace formula relates eigenvalues of Maass forms to the

geometry of the group, giving a relation (loosely) of the form

∑
h(rn) =

∫ ∞

−∞
rh(r) tanh(πr)dr +

∑
conj T∈Γ

(∗)h̃(T ).

Andri takes combinations of specially chosen test functions to find rough

approximations for eigenvalues.

1Andrei is a student of Andy Booker, and the possibility of this approach was noted

in [BSV06].
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The broad strategy is now to first compute several intervals [r − ϵ, r + ϵ]

that are known to contain a unique eigenvalue parameter r∗ (with

explicit ϵ bound); we then use a rigorous version of Hejhal’s algorithm to

refine the intervals.

Aside

Andrei’s work currently applies only to squarefree level and trivial inner

character. In a closely related project, we2 are working to develop an

explicit, computational trace formula for squarefull level and nontrivial

character.

2also with Bober, Booker, Knightley, and Min Lee
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Making Hejhal’s algorithm

rigorous
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Removing ≈ signs

We now fix a single interval [r − ϵ, r + ϵ] known to contain a unique (but

unknown) eigenvalue r∗.

Write r∗ = r + δ.

To make things rigorous, we must remove ≈ signs from our Hejhal system

T (r )⃗a ≈ b(r),

c(r) := a⃗ · v(r) + w(r) ≈ 0.

To do that, let b♮(r) denote the vector we get for r by truncating all

Fourier series at L, setting up the system, and ignoring all truncation

error terms. Then define

e = T (r∗)⃗a− b♮(r∗), b(r) := b♮(r) + e.

Now b(r) is precisely defined (though we are ignorant of its exact value).
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Let a⃗(r) denote the computed solution for a⃗ at r in the dehomogenized,

now well-defined Hejhal system

T (r )⃗a = b(r).

In practice, we prove bounds using this idealized form but compute in

interval arithmetic. Though we don’t know b(r) exactly (because we

don’t know the error e exactly), we can bound the error e. With these

definitions, it follows that a⃗(r∗) is an exact solution for the coefficients of

the desired Maass form, and thus the error e comes entirely from

truncation error.

Bounding the sizes of the tails of the Fourier expansions for f allows us to

compute interval estimates for b(r), and thus interval estimates for a⃗(r).
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Core Idea

We are now ready to state the core idea of how to refine the error. Recall

that the true eigenvalue parameter r∗ ∈ [r − ϵ, r + ϵ] and r∗ = r + δ. We

compute (interval estimates) for a⃗(r) and look at the auxiliary system

c(r) := a⃗(r) · v(r) + w(r).

Near r∗, c(r) has the expansion c(r∗) = c(r) + c ′(r)δ + c ′′(r̃)δ2/2 for

some r̃ between r and r∗. Rearranging, we find that

|δ| = |c(r)− c(r∗)|
|c ′(r) + c ′′(r̃)δ/2|

.

The core idea is to find tight (interval) approximations for c(r) and c ′(r)

and rigorously bound c(r∗) and c ′′. As |δ| ≤ ϵ, we find for example that

if ϵ|c ′′(r̃)| < |c ′(r)|, then

|δ| ≤ 2

∣∣∣∣c(r)− c(r∗)

c ′(r)

∣∣∣∣ ≈ extremely small

c ′(r∗)
.

If ϵ is small enough in terms of c ′(r∗) and c ′′(r∗), then this strategy

succeeds.
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But this doesn’t always succeed. In the worst-case scenario, we might

have c ′(r∗) = 0. I have never observed this to occur, but if it did then we

would have to construct a different auxiliary equation and work from

there.

More often, the problem is that our initial ϵ-interval estimate from the

trace formula isn’t quite strong enough. It is possible to work harder to

produce better initial intervals, but there is more work to be done. This

is a later project.
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For the remainder of this talk, I’ll comment on estimating and bounding

the components of the auxiliary expansion

c(r∗) = c(r) + c ′(r)δ + c ′′(r̃)δ2/2.
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c(r) and c(r ∗)

Estimating c(r) is “easy” as long as we can compute T (r), b♮(r), v(r),

and w(r) very precisely. As previously noted, we can bound the

truncation error e arbitrarily well by using enough coefficients, giving an

arbitrarily good interval bound for b(r). As long as T (r) is invertible,3

we compute interval bounds for a⃗(r). These directly give interval bounds

for c(r).

At the eigenvalue r∗, we should expect c(r∗) ≈ 0. The only error is also

due to truncation error. We can bound this by essentially the same

techniques as bounding the truncation error e for b♮(r).

3If T (r) is not invertible, then Hejhal’s algorithm fails and we choose a different

horocycle.
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c ′′(r)

Bounding c ′′(r) is the most technically involved aspect of the analysis. A

major problem is that naive derivatives here involve derivatives of the

Whittaker functions Wir , for which we don’t have particularly accurate

estimates.4

Generally, we can approximate Wir very well, but we can only efficiently

compute rigorous bounds for general ∂
∂rWir and ∂2

∂r2Wir .

We must be careful about which terms we can approximate and which

terms we can merely bound.

4A surprisingly large amount of my time on Maass forms has been centered on

producing various rigorous estimates for Bessel functions.
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Taylor-type approximations

For any matrix valued function M(t) that is twice differentiable in a

neighborhood of r , we define

M1(r , δ) :=

{
M(r+δ)−M(r)

δ δ ̸= 0,

M ′(r) δ = 0,

M2(r , δ) :=

{
M(r+δ)−M(r)−M′(r)δ

δ2 δ ̸= 0,
M′′(r)

2 δ = 0.

This implies that

M(r + δ) = M(r) +M1(r , δ)δ = M(r) +M ′(r)δ +M2(r , δ)δ
2

for sufficiently small δ.

To bound c ′′, we actually bound c2(r , δ).
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Second order Hejhal approximation

The Hejhal system T (t) · a⃗ = b(t) is smooth as Wit is smooth, and has

first order version

(T (r) + T1(r , δ)δ)(⃗a(r) + a⃗1(r , δ)δ) = b(r) + b1(r , δ)δ,

which implies that

T (r )⃗a1(r , δ) = b1(r , δ)− T1(r , δ)⃗a(r + δ).

Fixing again δ so that r∗ = r + δ (and performing similar analysis on the

second order version) shows that

a⃗1(r , δ) = T−1(r)(b1(r , δ)− T1(r , δ)⃗a(r
∗))

a⃗2(r , δ) = T−1(r)(b2(r , δ)− T ′(r )⃗a1(r , δ)− T2(r , δ)⃗a(r
∗)).

With bounds for the first and partial r -derivatives of Wir (y), we can

bound T ′(r),T1(r , δ),T2(r , δ), b1(r , δ), and b2(r , δ). We bound the

exact coefficients a⃗(r∗) using the Kim–Sarnak bound. Thus we can

bound a⃗1 and a⃗2.
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Similar analysis on the second order version, as well as the first and

second order versions of the auxiliary equation, ultimately show that

c2(r , δ) = w2(r , δ) + a⃗2(r , δ) · v(r) + a⃗1(r , δ) · v ′(r) + a⃗(r + δ) · v2(r , δ).

Using the bounds for a⃗1 and a⃗2 from before, we can bound c2(r , δ).
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c ′(r)

Finally, we approximate c ′(r). In principle, we could do this through a

first order approximation of the Hejhal system, as we did with c2 above.

But this would require a high accuracy algorithm to compute (not just

bound) ∂rWir .

Instead, we take a first order approximation to c ′(r) and apply our bound

for c2, via

c ′(r) =
c(r + δ0)− c(r)

δ0
+ c2(r , δ0)δ0.

We precisely approximated c(r) by solving Hejhal’s linear system, and we

do this again by solving another linear system for c(r + δ0) for a small δ0.

The final term c2(r , δ0) can be bounded as before, except that instead of

using the Kim-Sarnak bound for idealized coefficients a⃗(r∗), we use the

fact that we now have explicitly computed coefficients a⃗(r + δ0) and use

their actual values.
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Thank you very much.

There will be more details in a forthcoming

preprint (joint with Andrei Seymour-Howell),

and data on an LMFDB near you.

Please note that these slides are (or will soon

be) available on my website

(davidlowryduda.com).
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