VISUALIZING MODULAR CURVES

DAVID LOWRY-DUDA

ABSTRACT. This is a short note on how I produced the initial visualiza-
tions for modular curves in the LMFDB. At the second modular curves
workshop at MIT last month, JV and AS suggested that I make badges
for curves, similar to how each modular form has a badge or portrait.

1. TRANSLATIONS OF THE FUNDAMENTAL DOMAIN

The idea is simple. Each modular curve comes from a subgroup H of
GL(2,Z/NZ) for some N that we call the level. In short, we choose a set of
coset generators for H N SL(2,Z/NZ) in SL(2,Z/NZ) and form a portrait
from the translations of the standard fundamental domain of SL(2,Z)\H.

In a bit more detail, we consider the intersection H N SL(2,Z/NZ). Let
{7} denote a set of coset representatives for HNSL(2,Z/NZ) inside SL(2,Z/NZ).
We lift each of these 7 to a v € SL(2,Z). Thus we obtain a set of lifts of
coset representatives {v}, where each v € SL(2,Z).

Let F:={z =z +iy € H:—1 <a < 3, |2| > 1} denote the standard
fundamental domain of H under the action of SL(1,Z). We show F on the
Poincaré disk in Figure 1.

FIGURE 1. The standard fundamental domain F on the
Poincaré disk.

Date: December 7, 2022.
This work was supported by the Simons Collaboration in Arithmetic Geometry, Num-
ber Theory, and Computation via the Simons Foundation grant 546235.
1

https://math.mit.edu/~edgarc/MCW2.html
https://math.mit.edu/~edgarc/MCW2.html

2 DAVID LOWRY-DUDA

To the subgroup H, we associate the image from
U,
¥

where ~ ranges over the lifts of the coset representatives {7}.

Example 1. Consider the modular curve X,4(2), which has label 2.2.0.1in
the LMFDB!. This corresponds to the subgroup H = <(1 (1))> C GL(2,Z/27).
One can compute that

HNSL(2,Z/22) = {(15):(11)-(69)}-

A set of coset representatives for H NSL(2,Z/2/Z) is given by the two ma-
trices ($9), (3 1), which we can think of as being in SL(2,Z) by taking the
most obvious lifts. These matrices have the typical names I (the identity)
and T (translation). The identity matrix fixes F, while T" shifts F to the
right by one. On the Poincaré disk model, combining these two translations
of F to give Figure 2.

FiGURE 2. Visualization for 2.2.0.1. We can plainly see F
and a single translation to the right in this image.

While this basic strategy works for all sufficiently simple modular curves,
there are challenges that require slightly different approaches. For example,
for some modular curves the index of H NSL(2,Z/NZ) inside SL(2,Z/NZ)
is extremely large, greater than 10000. In practice it is not feasible or worth
the effort to include all of these cosets in the image badges.

In the rest of this document, we describe the implementation and some
of the design choices that went into the initial generation of images.

1https ://blue.1lmfdb.xyz/ModularCurve/Q/2.2.0.1/

https://blue.lmfdb.xyz/ModularCurve/Q/2.2.0.1/

VISUALIZING MODULAR CURVES 3

2. FINDING COSET REPRESENTATIVES

We construct a list £ C SL(2,Z) that descends to £ C SL(2,Z/NZ),
a set of coset representatives for H N SL(2,Z/NZ) inside SL(2,Z/NZ). A
random set of coset representatives {7} C SL(2,Z/NZ) would naturally lift
to elements {v} C SL(2,Z) whose natural translations v(F) would have
an irregular, disconnected, malformed appearance. We want to construct
L such that the corresponding domain (J, . v(F) is connected, and more
generally “as simple as possible.”

To do this, we adapt a well-known algorithm to compute a fundamental
domain for a congruence subgroup I' C SL(2,Z), or equivalently to compute
a set of coset representatives for I' in SL(2,Z). Recall that SL(2,Z) is
generated by two matrices,

SL(2,Z) = (T, S), T = <(1) 1) S = ((1’ _01>.

Recognizing a translation vF of the standard fundamental domain F as
a hyperbolic triangle, the three adjacent hyperbolic triangles are precisely
T(yF), T~ (vF), and S(7F).

We can guarantee that | Jv(F) will be connected if we recursively add el-
ements corresponding to hyperbolic triangles at the boundary of the current
fundamental domain. The idea is to construct these matrices in SL(2,7Z)
recursively, while verifying that the projections to SL(2,Z/NZ) are inde-
pendent.

In the following algorithm, we use I, S, T to mean the identity, inversion,
and translation matrices in SL(2,Z) as above.

Algorithm 1 Complete coset representative construction.

1: Initialize a queue queue with the identity matrix {I}.
2: Initialize empty list cosetreps. > representatives in SL(2,Z/NZ).
3: Initialize empty list cosetlifts. b lifted representatives in SL(2,7Z).
4: while queue is nonempty do

5: Remove the next element of queue. Call it 7.

6: Compute 7, the projection of v in SL(2,Z/NZ).
7 if 7 does not generate the same coset as any 7 € cosetreps then
8: Add 7 to cosetreps. > Found a new coset representative.
9: Add 7 to cosetlifts.

10: Add v-T,~-T7' and v- S to queue. > Consider all new

adjacent triangles.
11: end if
12: end while

Lemma 2. At the end of Algorithm 1, cosetreps is a complete list L of
coset representatives of HNSL(2,Z/NZ) in SL(2,Z/NZ), and cosetlifts

4 DAVID LOWRY-DUDA

is a list L of lifts of these coset representatives such that Uveﬁ ~v(F) is con-
nected.

Proof. Tt is clear that each v € £ is a lift of a corresponding 7 € L, as each
7 is constructed from + in the algorithm. The fact that £ U')/E £V (F) is
connected the fact that each ~ is built recursively from triangles adjacent to
earlier triangles in line 10 of Algorithm 1.

It only remains to show that £ is a complete list of coset representatives
of HNSL(2,Z/NZ) in SL(2,Z/NZ).

To prove this, suppose that the algorithm has terminated. Note that
line 7 guarantees that each 7 € £ corresponds to different cosets. Consider
a coset 7/(H NSL(2,Z/N7Z)). We will show that this coset is represented
in £. Among the representatives for this coset, we (lightly abuse notation
and) fix 7/ to be one having a lift ' € SL(2, Z) with minimum word length
in {S,T,T~'}, i.e. such that

N = H o (where 7; € {S,T,T71})

1<i<n

and where no other representative has a lift that can be written as a product
of less than n terms in {S,7T,T~'}. We also fix a representation for 7 as
above. For each 0 < j < n, define

Yi = H Ti

1<i<j

to be the jth partial product (and let 79 = I be the identity matrix). And
for each ~;, let 7; denote the image in SL(2,Z/NZ).

Let m denote the largest index such that 7, is equivalent to a found coset
representative ¥ € £. Note that m exists and m > 0, as I is always the first
found representative. If m < n, then 7;, is equivalent to some g, a coset rep-
resentative in £, but ¥,51 = Ym7my1 is not. But as g € L, lifts g7, gT !, gS
were added to queue in line 10. Note that 7,11 necessarily generates the

same coset as one of g7, gT—1, or gS. Hence when this representative in the
queue is processed, line 7 guarantees that a coset representative equivalent
to Fmy1 was either added to L, or that it was already equivalent. Thus we
conclude that m = n, and every coset is represented in L. U

Remark 3. Small variations of this algorithm allow one to track all sorts
of data on the graph. For example, maintaining a record of when ~/7; is
equivalent to some other 7 would allow one to track which edges of the plot-
ted domain are equivalent, precisely as with standard plots of fundamental
domains.

In practice, the final plots we produce will be under 400 x 400 pixels.
This is a reasonable size that fits in a sidebar, but is large enough to see
some details. But this also means that there isn’t enough space to see an
enormous number of translates of the fundamental domain.

VISUALIZING MODULAR CURVES 5

For the purpose of making nice visualizations, it suffices to identify the
“first” several coset representatives. Ideally, we would identify all cosets
whose hyperbolic triangle translates of F are sufficiently large (in the Eu-
clidean sense). But this is challenging without generating all the cosets. In-
stead, we follow the heuristic that cosets formed from long words in 7', 7!, S
typically lead to smaller translates of F than cosets formed from short words.

This is why in practice we use a FIFO (first-in-first-out) queue in line 5,
and when we enqueue new elements in line 10 we append these elements
(in the order given) at the end of the queue. The effect is that we find
a set of coset lifts £ consisting of elements v formed from relatively short
products of T, T~1, and S. In the LMFDB, we compute the “first” 384 coset
representatives in this way.

3. MAKING VISUALIZATIONS

We now assume that we have a set of coset representatives £ C SL(2,Z/NZ)
and a nice set of lifts £ C SL(2,Z), as given in §2.

3.1. The disk model. We use the disk model instead of the more common
upper half-plane model because it is a finite, bounded representation. All
images fit naturally into the same space to facilitate comparison. This is
the same reasoning behind the decision to use the disk model for portraits
for modular forms in the LMFDB [BBB*21, LD21].

We use the same Cayley transformation taking H to the disk D as with
modular form portraits:

z—1
M) = =5y

This preserves apparent vertical orientation of the imaginary axis in both
models: the points {0,7,ic0} € H are sent to {—i,0,i} € D, vertical and
centered. This choice of center point in the disk means that the standard
fundamental domain F has obvious placement in the top half of D.

3.2. Making plots. In the Poincaré disk model, geodesics are either por-
tions of straight lines or arcs of circles that intersect the unit circle orthog-
onally. A hyperbolic triangle has three geodesic edges. The fundamen-
tal domain F for SL(2,Z)\H has corners i, (0.5 + iv/3/2) ~ 0.2679, and
w(—0.5 4+ iy/3/2) ~ —0.2679. As in Figure 1, we split the fundamental
domain into two halves. This makes each translation v(F) easier to see.

To make the plots, I assume that we have a procedure HyperbolicPolygon
that takes three points A, B,C, a color ¢, and an « for transparency, and
plots the hyperbolic triangle with vertices A, B, C' in color ¢ with alpha value
a. T also assume we have the Cayley map p as above, and a way to compute
the action of a matrix v on an element z. These are each straightforward to
implement. This leads to Algorithm 2.

6 DAVID LOWRY-DUDA

Algorithm 2 Plotting routine.

Let cosetlifts denote the nice lifts in SL(2,7Z).
Set total to be the number of elements in cosetlifts.
Fix colorl and color?2.
A .
B« L+ils,
C e —t4+ils
D ¢ io00.
for idx := 0 up to total do
v < cosetlifts[idx].
a < p(vA).
b« u(yB).
¢ < p(y0).
d < p(yD).
« < setalpha(idx, total).
HyperbolicPolygon(a, b, d, colorl, a).
HyperbolicPolygon(a, c, d, colorl, a).
. end for

© 0D G Wy

el e e e e el
NPTy P2

Where setalpha is the following short function

1: function SETALPHA(idx, total)

2 if idx <= 128 then > o = 1 for the first 128 cosets.
3 a1

4 else if idx <= 384 then © « tapers towards 0 as idx nears 384.
5: a4+ 1— (idx — 128)/256

6 else

7 a<+0

8 end if

9: return o

10: end function

We show a couple of sample visualizations for 8.24.1.13% and 10.72.1.1°
created using this algorithm in Figures 3 and 4.

3.3. Additional practical considerations. We comment on a few of the
other practical decisions.

Intersections in PSL(2,Z), and consequences. It is worth noting that
the matrices v and —v have the same action on z. Thus it suffices to work
over PSL(2,7Z) when producing plots.

These visualizations capture information about the projection/intersection
of modular curves with PSL(2). This loosely represent some aspects of the

thtps://blue.lmfdb.xyz/ModularCurve/Q/S.24.1.13/
Shttps://blue.lmfdb.xyz/ModularCurve/Q/10.72.1.1/

https://blue.lmfdb.xyz/ModularCurve/Q/8.24.1.13/
https://blue.lmfdb.xyz/ModularCurve/Q/10.72.1.1/

VISUALIZING MODULAR CURVES 7

FIGURE 3. Visualization for modular curve 8.24.1.13.

FIGURE 4. Visualization for modular curve 10.72.1.1.

curve, but omits much information. When two curves have the same projec-
tion/intersection, they will have the same picture. We identify these classes
of curves and generate one image for each intersection class. We do this
using stored CPlabels in the LMFDB initially.

8 DAVID LOWRY-DUDA

This drastically cuts down the number of necessary images to tens of
thousands, as opposed to millions and millions. This has far-reaching effects:
we can afford to make the pictures slightly larger if desired, and it’s not
necessary to make the visualizations particularly efficiently.

To make the first 3000 pictures took a combined total of approximately
40 hours of computation time, which is on the order of one minute per
picture. Essentially all the computation time goes into finding cosets, and
essentially all the time in finding cosets goes into determining whether two
given elements generate the same coset. Determining subgroup membership
in high index subgroups of SL(2,Z/NZ) can be time consuming.

Color choices. To make the plots, we use the two colors #A1DAB4 (light
green) and #2C7FB8 (dark blue). There are blue-green colors near the cur-
rent two dominant blues of the LMFDB, #90CAF9 (blue) and #E3F2FD (light
blue). This pair of colors has good contrast in hue, saturation, and bright-
ness — and thus retain most of their structure even to those with many
different types of vision.

APPENDIX A. SPACE EFFICIENT SVGS - THE PATH NOT TRAVELED

Finally, we note an alternative, space efficient visualization.

The visualizations produced consist of a finite number of circular arcs and
line segments. These are both primitive elements in SVG (scalable vector
graphics) files. To produce a high fidelity image, one could then create SVG
files.*

In additition, a carefully made SVG is smaller than a raster, even at the
400 x 400 pixel scale.

A particularly efficient, simple badge comes from visualizing the silhou-
ette of the plots described above. In this way, the visualization ultimately
consists of two paths: a path consisting of arcs and line segments, and the
bounding unit circle. To make this visualization, it suffices to compute the
boundary edges, orient them, and connect them in an SVG file.

In principle this can be done very similarly as in Remark 3, a small
modification of Algorithm 1. This amounts to tracking for each coset what
it’s neighbors are, and whether the neighbors are in the list of cosets (i.e.
plotted) or equivalent to those in the list of cosets (i.e. at the boundary). In
cases where we truncate the number of cosets, it is also necessary to track
neighbors that haven’t been examined (i.e. also at the boundary, possibly
for truncation reasons).

But in practice it’s not hard to generate the boundary from the generated
list of cosets given by Algorithm 1. The idea is to study the translations of
the three edges of the base fundamental domain F. Collect all translations
obtained from act on all of these edges by all of the cosets — any edge that

40One reason we didn’t do this initially is because we already had the infrastructure for
storing and displaying PNG rasters, and these visualizations act more like badges and less
like <ds.

VISUALIZING MODULAR CURVES 9

appears twice is not a boundary edge, and any edge that appears exactly
once is on the boundary.

This gives an (unordered) list of boundary edges. To order the list, it
suffices to start from any edge and follow tail to head. We note that the
order of coset generation guarantees that each vertex will never occur in
more than 2 boundary edges, and thus the naive algorithm suffices.

Require: p(z), the Cayley map. described above.
1: function COMPUTEBOUNDARYEDGES(cosets)

2: B + % + ’L@

3: C «+ —% + l§

4: D < io00.

5: Initialize empty list edges.

6: for v € cosets do

T e1 < (u(vB), p(vC)).

8: ez <= (u(yB), p(vD)).

9: es + (n(vC), p(yD)).

10: for e; € (e1,€e2,e3) do

11: if e; € cosets then Remove e; from edges.
12: else Add e; to edges.

13: end if

14: end for

15: end for

16: return edges.

17: end function

18:

19: function ORDERBOUNDARYEDGES(edges)
20: Remove first element of edges and call it edge.
21: Initialize list orderedEdges to be [edge].
22: while edges is nonempty do
23: lastVertex < the second vertex in last edge in orderedEdges.
24: Find newEdge in edges that contains lastVertex.
25: Remove newEdge from edges and add it to orderedEdges, re-

versing its orientation if necessary so that lastVertex is its first vertex.
26: end while
21 return orderedEdges.
28: end function

Finally, one produces the SVG. A minor complicating factor with SVG
arcs is that they take the two endpoints, the radius of the circle (or rather the
radii of the ellipse and a rotation for the ellipse), and two flags indicating
which of the four potential arcs to draw that connect these two points.
These four potential arcs come from the two circles with the given radius
that connect the two endpoints, and each circle has a long arc and a short

10 DAVID LOWRY-DUDA

arc. For these visualizations, we always want the short arc. But the other
flag, called the sweep flag, is slightly more complicated.

To compute the sweep flag, it is helpful to introduce an auxiliary point
via that represents a point approximately on the intended arc. The key
observation here is that for all geodesic arcs on the Poincaré disk, we can
take via to be a point a bit closer to the center of the disk, and this will
always give the correct sweep direction.

Require: real(z) and imag(z), giving the real and imaginary parts of z.
Require: atan2(y, x), as in the C standard library.
1: function COMPUTESWEEP(start, end)
via < (start + end) / 3.
SE <— end - start.
SV < via - start.
) < atan2(imag(SE), real(SE)) - atan2(imag(SV), real(SV)).
Normalize 6 to be between —7 and .
if 6§ < 0 then
return 1.
else
return 0.
11: end if
12: end function

,_.
e

Taken together, these steps form the SVG plotting algorithm in Algo-
rithm 3. The visualizations in Figures 5 and 6 depict the same modular
curves as in Figures 3 and 4, but using this simplified SVG silhouette pre-
sentation.

Although these SVGs very clearly show less information, the primary
advantage is that each take less than 1KB of space! That’s extremely space
efficient.

FIGURE 5. Visualization for modular curve 8.24.1.13.

VISUALIZING MODULAR CURVES 11

FIGURE 6. Visualization for modular curve 10.72.1.1.

Algorithm 3 SVG creation

Require: orderedEdges, the ordered list of boundary edges from above.

Require: svgline(start, end), a routine to add an svg line between the
two given points.

Require: svgarc(start, end, radius, sweep), a routine to add an svg
arc as

Require: ComputeRadius(start, end), giving the (Euclidean) radius of
the geodesic between start and end.

Require: ComputeSweep(start, end) as above.

1: Initialize empty list svgPath.

2: for edge in orderedEdges do

3 Write edge as (start, end)

4 if edge is a line segment then

5: Append svgline(start, end) to svgPath.

6 else

7 radius ¢ ComputeRadius(start, end).

8 sweep < ComputeSweep(start, end).

9 Append svgarc(start, end, radius, sweep) to svgPath.

10: end if
11: end for

REFERENCES

[BBB*21] Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa,
John E. Cremona, Maarten Derickx, Min Lee, David Lowry-
Duda, David Roe, Andrew V. Sutherland, and John Voight.

12

DAVID LOWRY-DUDA

Computing classical modular forms. In Arithmetic geometry,
number theory, and computation, Simons Symp., pages 131-213.
Springer, Cham, [2021] (©)2021.

[LD21] David Lowry-Duda. Visualizing modular forms. In Arithmetic
geometry, number theory, and computation, Simons Symp., pages
537-557. Springer, Cham, [2021] (©)2021.

	1. Translations of the Fundamental Domain
	2. Finding coset representatives
	3. Making visualizations
	3.1. The disk model
	3.2. Making plots
	3.3. Additional practical considerations
	Intersections in PSL(2, Z), and consequences
	Color choices

	Appendix A. Space efficient SVGs - the path not traveled
	References

