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This is an update on my project to compute Maass forms. I last talked

about this at our November 2020 meeting. Since then, the broad plan to

compute Maass forms rigorously has been unchanged, but the details

have changed significantly.

This work has been heavily informed by Andy Booker and his soon-to-be

PhD student Andrei Seymour-Howell at the University of Bristol. I should

also thank Drew and Brendan for frequent support.
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Our goal is to rigorously compute Maass forms. The problem is that

everything associated to a generic Maass form is transcendental and one

will never exactly compute a Maass form.

Each Maass form discussed today has an expansion

f (z) =
∑
n≥1

a(m)√
m

Wir (2πmy) cs(2πmx),

where cs(·) is either cos(·) or sin(·), depending on the symmetry type of

the Maass form. This is a (real) analytic function on Γ0(N)\H for some

squarefree N, and it is an eigenfunction of a Laplacian with eigenvalue

λ = 1
4 + r2.

By “compute a Maass form”, we mean to rigorously estimate the

eigenvalue λ (or equivalently the spectral parameter r) to to rigorously

estimate the coefficients a(m).
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Heuristic Evaluation

Last time I talked about Maass forms, I talked about heuristic

computation of Maass forms using Hejhal’s algorithm. This uses the

modularity of f (z) to construct an approximate homogenous linear

system that can be solved to (heuristically) approximate a Maass form.1

To obtain better heuristics, one can iteratively apply Hejhal’s algorithm.

Broadly, today I describe a way to make Hejhal’s algorithm rigorous. To

do that, we first briefly review Hejhal’s algorithm.

1The details, including how to use Atkin-Lehner operators to reduce the dimension of

the system and how to incorporate the various cusps, were the focus of my previous

talk.
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Hejhal’s Algorithm

Let f (z) =
∑

n≥1
a(m)√

m
Wir (2πmy) cs(2πmx) denote a Maass form. For a

fixed H > 0 and Y > 0, define the 2H points

zm = xm + iY =
m − 1

2

2H
+ it, 1− H ≤ m ≤ H.

These are equispaced points on a horocycle, and a form of Fourier

inversion shows that

2

H

H∑
m=1

f (zm) cs(2πkxm) =

∑
ϵ∈{−1,1}

∑
n≥1

n≡ϵk mod 2H

(−1)ϵ+1+(n−ϵk)/2H a(n)√
n
Wir (2πnY ).

Note that if we truncate the Fourier expansion of f at some L for some

L < H, then the only term appearing on the RHS is a(k)√
a(k)

Wir (2πkY ).
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This truncation introduces an error. We return to this error later.

To construct a nontrivial linear system, we choose Y small and use the

modularity of f . If Y is sufficiently small (and we pretend that there is

only one cusp), then zm = xm + iY will be outside “the” fundamental

domain for f . Let z∗m = x∗m + iy∗
m denote the pullback of zm to the

fundamental domain, so that f (zm) = f (z∗m).

With this choice of horocycle and the above computation, we find that

a(k)√
k
Wir (2πkY ) =

2

H

H∑
m=1

f (z∗m) cs(2πkxm) + (truncation error).

We do this for each k with 1 ≤ k ≤ L. Note that if we again substitute

the (truncated) Fourier expansions for f (z∗m), this becomes a noisy

homogenous linear system in terms of the L unknowns {a(k)}1≤k≤L.
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Abstractly, we think of this linear system as being of the form

T (r )⃗a ≈ 0,

where a⃗ =
(
a(k)

)T
1≤k≤L

. For Maass newforms, a(1) = 1. Using this, we

can remove the first column of the system of equations (corresponding to

a(1)) and separate the first row as an auxiliary equation. Explicitly (and

abusing notation), we have

T (r )⃗a ≈ b(r),

where now a⃗ =
(
a(k)

)
T
2≤k≤L

and b(r) are explicit in terms of the

coefficients of a(1) = 1.

The auxiliary equation from the first row can be written

c(r) := a⃗ · v(r) + w(r) ≈ 0.
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Iteration

T (r )⃗a ≈ b(r), (1)

c(r) := a⃗ · v(r) + w(r) ≈ 0. (2)

Note that the matrix T (r) and components b(r), v(r), and w(r) depend

on the (a priori unknown) parameter r . One form of Hejhal’s algorithm is

to guess an initial r , solve (1) to get approximations to the coefficients

a(k), and then iterate while trying to minimize the error term in the

auxiliary equation (2).

One part of making this rigorous is to find precise error bounds in the

linear system (1) and the first coefficient auxiliary equation (2), including

the error coming from truncation.
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Additional Ingredient

The key difference from my original efforts to find Maass forms has been

the unexpectedly strong success of a method to find low-precision

estimates for the eigenvalues λ using an explicit, computational form of

Selberg’s trace formula. This is the topic of Andrei Seymour-Howell’s

PhD thesis, and he talked about this at ANTS earlier this year.

The broad strategy is now to first compute several intervals [r − ϵ, r + ϵ]

that are known to contain a unique eigenvalue parameter r∗ (with

explicit ϵ bound); we then use a rigorous version of Hejhal’s algorithm to

refine the intervals.

Aside

Andrei’s work currently applies only to squarefree level and trivial inner

character. In a closely related project, we are working to develop an

explicit, computational trace formula for squarefull level and nontrivial

character.
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Removing ≈ signs

We now fix a single interval [r − ϵ, r + ϵ] known to contain a unique (but

unknown) eigenvalue r∗.

Write r∗ = r + δ.

To make things rigorous, we must remove ≈ signs from our Hejhal system

T (r )⃗a ≈ b(r),

c(r) := a⃗ · v(r) + w(r) ≈ 0.

To do that, let b♮(r) denote the vector we get for r by truncating all

Fourier series at L, setting up the system, and ignoring all truncation

error terms. Then define

e = T (r∗)⃗a− b♮(r∗), b(r) := b♮(r) + e.

Now b(r) is precisely defined (though we are ignorant of its exact value).

9



Let a⃗(r) denote the computed solution for a⃗ at r in the dehomogenized,

now well-defined Hejhal system

T (r )⃗a = b(r).

In practice, we prove bounds using this idealized form but compute in

interval arithmetic. Though we don’t know b(r) exactly (because we

don’t know the error e exactly), we can bound the error e. With these

definitions, it follows that a⃗(r∗) is an exact solution for the coefficients of

the desired Maass form, and thus the error e comes entirely from

truncation error.

Bounding the sizes of the tails of the Fourier expansions for f allows us to

compute interval estimates for b(r), and thus interval estimates for a⃗(r).
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Core Idea

We are now ready to state the core idea of how to refine the error. Recall

that the true eigenvalue parameter r∗ ∈ [r − ϵ, r + ϵ] and r∗ = r + δ. We

compute (interval estimates) for a⃗(r) and look at the auxiliary system

c(r) := a⃗(r) · v(r) + w(r).

Near r∗, c(r) has the expansion c(r∗) = c(r) + c ′(r)δ + c ′′(r̃)δ2/2 for

some r̃ between r and r∗. Rearranging, we find that

|δ| = |c(r)− c(r∗)|
|c ′(r) + c ′′(r̃)δ/2|

.

The core idea is to find tight (interval) approximations for c(r) and c ′(r)

and rigorously bound c(r∗) and c ′′. As |δ| ≤ ϵ, we find for example that

if ϵ|c ′′(r̃)| < |c ′(r)|, then

|δ| ≤ 2

∣∣∣∣c(r)− c(r∗)

c ′(r)

∣∣∣∣ ≈ extremely small

c ′(r∗)
.

If ϵ is small enough in terms of c ′(r∗) and c ′′(r∗), then this strategy

succeeds.
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But this doesn’t always succeed. In the worst-case scenario, we might

have c ′(r∗) = 0. I have never observed this to occur, but if it did then we

would have to construct a different auxiliary equation and work from

there.

More often, the problem is that our initial ϵ-interval estimate from the

trace formula isn’t quite strong enough. It is possible to work harder to

produce better initial intervals, but there is more work to be done. This

is a later project.

For initial upload into the LMFDB, I intend to indicate which Maass

forms are rigorously certified.
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For the remainder of this talk, I’ll comment on estimating and bounding

the components of the auxiliary expansion

c(r∗) = c(r) + c ′(r)δ + c ′′(r̃)δ2/2.
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c(r) and c(r ∗)

Estimating c(r) is “easy” as long as we can compute T (r), b♮(r), v(r),

and w(r) very precisely. As previously noted, we can bound the

truncation error e arbitrarily well by using enough coefficients, giving an

arbitrarily good interval bound for b(r). As long as T (r) is invertible,2

we compute interval bounds for a⃗(r). These directly give interval bounds

for c(r).

At the eigenvalue r∗, we should expect c(r∗) ≈ 0. The only error is also

due to truncation error. We can bound this by essentially the same

techniques as bounding the truncation error e for b♮(r).

2If T (r) is not invertible, then Hejhal’s algorithm fails and we choose a different

horocycle.

14



c ′′(r)

Bounding c ′′(r) is the most technically involved aspect of the analysis. A

major problem is that naive derivatives here involve derivatives of the

Whittaker functions Wir , for which we don’t have particularly accurate

estimates.3

Generally, we can approximate Wir very well, but we can only efficiently

compute rigorous bounds for general ∂
∂rWir and ∂2

∂r2Wir .

We must be careful about which terms we can approximate and which

terms we can merely bound.

3A surprisingly large amount of my time on Maass forms has been centered on

producing various rigorous estimates for Bessel functions.
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Taylor-type approximations

For any matrix valued function M(t) that is twice differentiable in a

neighborhood of r , we define

M1(r , δ) :=

{
M(r+δ)−M(r)

δ δ ̸= 0,

M ′(r) δ = 0,

M2(r , δ) :=

{
M(r+δ)−M(r)−M′(r)δ

δ2 δ ̸= 0,
M′′(r)

2 δ = 0.

This implies that

M(r + δ) = M(r) +M1(r , δ)δ = M(r) +M ′(r)δ +M2(r , δ)δ
2

for sufficiently small δ.

To bound c ′′, we actually bound c2(r , δ).
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Second order Hejhal approximation

The Hejhal system T (t) · a⃗ = b(t) is smooth as Wit is smooth, and has

first order version

(T (r) + T1(r , δ)δ)(⃗a(r) + a⃗1(r , δ)δ) = b(r) + b1(r , δ)δ,

which implies that

T (r )⃗a1(r , δ) = b1(r , δ)− T1(r , δ)⃗a(r + δ).

Fixing again δ so that r∗ = r + δ (and performing similar analysis on the

second order version) shows that

a⃗1(r , δ) = T−1(r)(b1(r , δ)− T1(r , δ)⃗a(r
∗))

a⃗2(r , δ) = T−1(r)(b2(r , δ)− T ′(r )⃗a1(r , δ)− T2(r , δ)⃗a(r
∗)).

With bounds for the first and partial r -derivatives of Wir (y), we can

bound T ′(r),T1(r , δ),T2(r , δ), b1(r , δ), and b2(r , δ). We bound the

exact coefficients a⃗(r∗) using the Kim–Sarnak bound. Thus we can

bound a⃗1 and a⃗2.
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Similar analysis on the second order version, as well as the first and

second order versions of the auxiliary equation, ultimately show that

c2(r , δ) = w2(r , δ) + a⃗2(r , δ) · v(r) + a⃗1(r , δ) · v ′(r) + a⃗(r + δ) · v2(r , δ).

Using the bounds for a⃗1 and a⃗2 from before, we can bound c2(r , δ).
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c ′(r)

Finally, we approximate c ′(r). In principle, we could do this through a

first order approximation of the Hejhal system, as we did with c2 above.

But this would require a high accuracy algorithm to compute (not just

bound) ∂rWir .

Instead, we take a first order approximation to c ′(r) and apply our bound

for c2, via

c ′(r) =
c(r + δ0)− c(r)

δ0
+ c2(r , δ0)δ0.

We precisely approximated c(r) by solving Hejhal’s linear system, and we

do this again by solving another linear system for c(r + δ0) for a small δ0.

The final term c2(r , δ0) can be bounded as before, except that instead of

using the Kim-Sarnak bound for idealized coefficients a⃗(r∗), we use the

fact that we now have explicitly computed coefficients a⃗(r + δ0) and use

their actual values.
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Thank you very much.

There will be more details in a forthcoming

preprint, and data on an LMFDB near you.
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