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Broad Strategy

Our goal is to count the number Nn(X ) of degree n number fields over Q
with discriminant up to X . At their core, almost all general techniques to

count number fields resort to estimating the size of a family of

polynomials guaranteed to generate all number fields with discriminant

up to X .

We use the same initial setup: to count Nn(X ), we count monic

polynomials

f (x) = xn + c1x
n−1 + · · ·+ cn.

It will be convenient to introduce an auxiliary notation

H = X
1

2n−2

and refer to polynomials with |ci | ≤ H i as having height at most H.
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Schmidt [Sch95] showed that it suffices to count irreducible polynomials

f with trace 0 (i.e. with c1 = 0) and height1 at most H. This leads to

the bound

Nn(X ) ≪ H2+···+n ≍ X
n+2
4 .

We call this the Schmidt Bound.

It’s not hard to show that including polynomials that don’t have trace 0

causes no problems. This naively adds a factor of H (as we count over

|c1| ≤ H1) — but this family overcounts also by a factor of at least H.

Lemma

The cardinality of the set of monic irreducible polynomials of height H

bounds H · Nn(X ). To bound Nn(X ), we can count these polynomials

and divide by H.

1roughly, ignoring here and later constants that might depend on n
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There is a folklore conjecture, sometimes attributed to Linnik, that the

true answer is closer to

Nn(X ) ≍ X .

Proving this is classical for n = 2. For n ≤ 5, this is known and due to

Davenport and Heilbronn (n = 3) and Bhargava (n = 4, 5). But

otherwise this is unknown.2

For n ≫ 1, Ellenberg and Venkatesh, Couveignes, and Lemke Oliver and

Thorne (three separate papers, each improving over the previous) proved

that

Nn(X ) ≪ X c(log n)2 .

Computing constants, this improves on Schmidt’s bound for n ≳ 95.

Recent work of Bhargava, Shankar, and Wang (appearing simultaneously

on the arxiv as our preprint) uses different techniques to get a better

bound than I present here.

2It is also interesting to ask about Nn(X ;G) for a specific Galois group G . This is

also studied.
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Sources of Loss

Counting all polynomials of height H ≍ X 1/(2n−2) detects all number

fields of discriminant up to X , but typically vastly overestimates. There

are two large sources of error.

1. The typical polynomial of height H has Disc(f ) ≈ Hn2−n = X
n
2 , and

typically cuts out a number field with similar discriminant. Thus we

are including many, many extraneous polynomials by including all

polynomials of height up to H.

2. Overcounting: the same number field might be counted repeatedly.

Ellenberg and Venkatesh recognized that relevant polynomials have other

associated data (essentially mixed traces Tr(αiβj) of small height),

allowing them to discard extraneous polynomials for n ≫ 1. In this work

we identify different extraneous polynomials, ultimately based on

harmonic analytic properties of the discriminant function.
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To count polynomials, we split them into two pieces:

1. We first count polynomials with ‘small’ discriminant, and then

2. We count polynomials with ‘large’ discriminant.

Most polynomials have large discriminant. If f (x) cuts out the K , then

Disc(f ) = Disc(K )[OK : Z[α]]2,

where α is a root of f over K . We call the last factor Index(f )2. In order

to bound the number of polynomials with large discriminant, we split

these into two subpieces, depending on whether the radical of the index

is small or large.

1. We first count polynomials with ‘small’ discriminant, and then

2. 2.1 We then count polynomials with ‘large’ discriminant and ‘large’ index

radical.

2.2 We then count polynomials with ‘large’ discriminant and ‘small’

index radical.
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Small discriminant

For polynomials of small discriminant, we appeal to Davenport’s Lemma

(or the Lipschitz Principle).

Lemma (Davenport’s Lemma)

Suppose Ω ⊂ Rn is a region cut out by algebraic inequalities. Then the

number of lattice points Z ∩ Ω is

Vol(Ω) + O
(
max
π

Vol(π(Ω))
)
,

where the maximum runs over projections π of Rn onto its various

coordinate hyperplanes.

Morally, the number of lattice points in a region is the volume of the

region, up to an error comparable to the surface area of the region

(appropriately defined).
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We define our region to be

ΩH,Y := {(c1, . . . , cn) ∈ Rn : |ci | ≤ H i ,Disc(fc) ≤ Hn2−n/Y }.

We will freely translate between c ∈ F n and monic polynomials in F [x ],

via

fc(x) = xn + c1x
n−1 + · · ·+ cn.

The maximum volume of coordinate projections is trivially On(H
n2+n

2 −1),

coming from projecting (c1, . . . , cn) 7→ (c2, . . . , cn) (i.e. forgetting c1)

and ignoring the discriminant condition.

It suffices to consider Ω1,Y , as

Vol(ΩH,Y ) = H
n2+n

2 Vol(Ω1,Y ),

It is possible to apply Van der Corput’s lemma to show that

Vol(Ω1,Y ) ≪ Y− 1
n−1 , but we do better.
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Discriminant density

What is the density of the condition that the discriminant is small?

Proposition (Discriminant density)

For n ≥ 2, let Qv be a completion of Q with absolute value |·|v . Let µv

be the associated Haar measure on Qv normalized when v is finite so

that µv (Zv ) = 1, and agreeing with the Lebesgue measure when v is

infinite. Let ν be the product measure on Qn
v . For any δ ∈ (0, 1),

ν({c ∈ Qn
v : |ci |v ≤ 1 and |Disc(fc)|v ≤ δ}) ≍n δ

1
2+

1
n .

With δ = Y−1 and Qv = R, this gives

Vol(Ω1,Y ) ≪ Y− 1
2−

1
n ,

implying that the number of polynomials of height up to H which

Disc(f ) ≤ Hn2−n/Y is ≪ H
n2+n

2 /Y
1
2+

1
n + H

n2+n
2 −1.
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Sketch on discriminant density

Proving this is annoying in coordinate space. Working with the

discriminant is much easier in root space. It’s possible to change variables

to change perspective, following work of Shankar and Tsimerman.

Briefly, let 111δ(f ) denote the characteristic function for polynomials with

|Disc(f )|v ≤ δ. Then we have that

ν(· · · ) =
∑

[Kv :Qv ]=n

|Disc(Kv )|1/2v

|Aut(Kv )|

∫
OKv

|Disc(fα)|1/2v 111δ(fα)dµ(α),

where the sum is over étale algebras and fα is the characteristic

polynomial of α. Pretending every étale algebra is totally split, for any α

for which 111δ(fα) ̸= 0, we have

|Disc(fα)|v =
n∏

i=1

∏
j ̸=i

|αi −αj |v ≤ δ =⇒
∏
j ̸=i

|αi −αj |v ≤ δ
1
n for some i .

The δ
1
2 comes from |Disc(fα)|1/2v .
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Large discriminant, large index radical

That handles small discriminant counts. For larger discriminants, we split

on the radical of the index. This is inspired from an old preprint of

Bhargava, Shankar, and Wang [BSW22] that proves:

Lemma (BSW-Inventiones)

For n ≥ 3,H ≥ 1,M ≥ 1, we have that

#
{
fc : |ci |≤H i

m2|Disc(fc ) for some squarefree m≥M

}
≪n

H
n2+n

2

M
+ H

n2+n
2 − 1

5 .

Note that Index(f )2 | Disc(f ), and if Index(f ) is large and has large

radical, then it has a large squarefree part. In our paper, we sharpen this

result to − 1
2 + ϵ instead of − 1

5 (by applying a stronger sieve).
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Small index radical

It remains to count polynomials with large discriminant, but small index

radical. We prove that

Theorem

The number of polynomials of degree n and height H for which

rad(Index(f )) < H1−ϵ but Index(f ) > H
n(n−3)

2 is

O(H
n2+n

2 − 4
3−

4
n+ϵ + H

n2+n
2 − 2n

3 +3+ϵ).

We’ll return to this later. A large part of our recent preprint works on

proving this result. More broadly, suppose we had a hypothetical result

for some 0 < α < 1 and β > 0:

Proposition (Proposition P(α, β))

The number of polynomials of degree n and height H for which

rad(Index(f )) < Hα but Index(f ) > H
n(n−3)

2 is O(H
n2+n

2 −β+ϵ).
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Assembling a proof

As noted before, Disc(f ) = Disc(K ) Index(f )2. Taking Y = Hn−1 in the

small discriminant lemma shows that the number of polynomials of

height up to H and having Disc(f ) ≤ H(n−1)2 is O(H
n2+n

2 −1). Thus with

at most that many exceptions,

Index(f )2 · Disc(K ) = Disc(f ) ≥ H(n−1)2 .

We are counting number fields K with Disc(K ) ≤ X ∼ H2(n−1), and thus

each of the corresponding polynomials has index bounded below by

Index(f ) ≫ H
(n−1)(n−3)

2 .

Taking M = Hα in the BSW Lemma shows that the number of

polynomials of height H, index bounded below by H
(n−1)(n−3)

2 , and index

radical bounded below by Hα is at most H
n2+n

2 −α + H
n2+n

2 − 1
5 . And

Proposition P(α, β) (if true) implies that the number of remaining

polynomials (with rad(Index(f )) < Hα) is at most H
n2+n

2 −β+ϵ.
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In total, these bounds imply that

H · Nn(X ) ≪ H
n2+n

2 −α+ϵ + H
n2+n

2 −β+ϵ + H
n2+n

2 − 1
2+ϵ.

Recalling that H ≈ X
1

2n−2 , let δ = min{ 1
2 , α, β}. Then this shows that

Nn(X ) ≪ X
n+2
4 − δ

2n−2+ϵ.

In particular, any proved form of Proposition P(α, β) yields an

improvement over Schmidt.

In our preprint, we show that we can take δ = 1
2 .
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In the remainder of this talk, I’d like to describe how one might try to

prove propositions P(α, β) — counting the number of polynomials of

height H, small index radical, and large index.

Intuitively, one first quantifies the intuition that if Index(f ) is large but

rad(Index(f )) is small, then Index(f ) should be highly divisible by ‘large’

powers of primes. One can show that there is a cubefull divisor d of

Index(f ) of size H2 < d ≤ H3.

Then we bound the number of polynomials of height H with d2 | Disc(f ),
and take the union bound across various possible cubefull d .
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To bound the number of polynomials with d2 | Disc(f ), we use Fourier

analysis. Let ψp2k be the characteristic function for polynomials having

p2k dividing their discriminants and define

ψ̂p2k (u) :=
1

p2kn

∑
f

ψp2k (f ) exp

(
2πi⟨f ,u⟩

p2k

)
.

Then our goal is to produce good bounds for ψ̂p2k and to study its

support (and then apply a form of the Chinese remainder theorem

Poisson summation to recover information about ψd2k ).
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Bounds

The “trivial” Fourier estimate is the density of the relevant polynomials,

which follows from the discriminant density proposition earlier — not

applied at finite places.

Corollary

Let n ≥ 2, k ≥ 1. The set of monic polynomials f ∈ Zp[x ] for which

p2k | Disc(f ) has relative density ≍n p−k− 2k
n .

Thus |ψ̂p2k (uuu)| ≪n p−k− 2k
n in general. This is nontrivial, but we want

better bounds. This is hard.

But it turns out there is an interesting and strange interaction between

the number theoretic properties of the discriminant function and Fourier

transform of ψp2k that helps significantly.
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Support

We show that the support of ψ̂p2k is constrained to “near arithmetic

progressions.” Roughly, if u = (u1, . . . , un) ∈ (Z/p2kZ)n, then u is in the

support only if

min{vp(ui ), k} = min{vp(un) + (n − i)a, k}.

This is like an arithmetic progression, except that terms above k are

considered k . Weird!

To prove this, we show that for all uuu in the support of ψ̂p2k , we have that

uuu ≈ DcDcDc (where DcDcDc := (∂c1 Disc(fc), . . . , ∂cn Disc(fc))) for some ccc . (This is

not at all obvious). The arithmetic progression property comes from

studying possible gradient vectors DcDcDc . The idea then is that the

discriminant polynomial satisfies an enormous number of algebraic

relations.
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Nontrivial bounds

For nontrivial phases uuu, the work is technical. We briefly sketch the

shape of the argument. Suppose we consider uuu = (u1, u2, 0, . . . , 0). After

applying the Shankar–Tsimerman change of variables to “root space”, we

want to study∫
OKp

|Disc(fα)|1/2p ϕp2k (fα)e(−u1σ1(fα) + u2σ2(fα))dµ(α),

where fα is the characteristic polynomial of α and σi (α) are the ith

elementary symmetric function in the roots λλλ of fα.

|Disc(fα)|p is determined by congruences between the roots of fα. We

study points α ∈ OKp with neighborhoods that all have “large”

discriminants for congruence reasons via density. In other neighborhoods,

we apply stationary phase.
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It turns out that it suffices to study uuu = (u1, u2, 0, . . . , 0). To see this, we

look at the fundamental Poisson argument. With ϕ(·) a rapidly decaying

positive Schwarz function that is 1 on the unit box [−1, 1]n, Poisson

summation gives that∑
ccc

ϕ(
c1
H
, . . . ,

cn
Hn

)ψd2(fccc) = H
n2+n

2 ϕ̂p2(000)ψ̂d2(000)

+ H
n2+n

2

∑
uuu ̸=000

ψ̂d2(uuu)ϕ̂

(
u1H

d2
,
u2H

2

d2
,
u3H

3

d2
, · · · , unH

n

d2

)
.

We use this to count polynomials for cubefull d with H2 < d < H3. As

d < H3 and the decay of ϕ̂, these sums essentially only have ui = 0 for

i ≥ 6. Recall that the support of ϕ̂ has an “arithmetic progression”

property — implying that the next couple of coefficients are almost zero.

Carrying this out fully shows that we only need to consider when

u1, u2 ̸= 0.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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Astérisque, 228(4):189–195, 1995.

Columbia University Number Theory Seminar (New York, 1992).

https://arxiv.org/abs/2005.14110

	Appendix

