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I’ll describe a series of ideas that began at an AIM workshop on

Arithmetic Statistics, Discrete Reduction, and Fourier Analysis in

February of this year. The focus was to gather analysts, number

theorists, and geometers together in order to apply ideas from harmonic

analysis to questions in arithmetic.

The focus is the set of ideas leading to [AGO+], Quantitative Hilbert

irreducibility and almost prime values of polynomial discriminants in

collaboration with Theresa Anderson, Ayla Gafni, Robert Lemke Oliver,

George Shakan, and Ruixiang Zhang (half number theorists, half

analysts). I also touch on forthcoming work that also includes Jiuya

Wang and Kevin Hughes.
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Polynomials with small Galois group

Our goal is to count polynomials (over Z) with small Galois group (as

extensions over Q).

It’s well known that a “generic” polynomial of degree n will almost surely

have Galois group Sn. We can state this quantitatively, but we need to

introduce some notation. Define Vn(Z) to be the set of degree n

polynomials over Z, and Vmon
n (Z) the subset of monic degree n

polynomials. Also define

Vn(H) := {f ∈ Vn(Z) : f = anx
n + · · ·+ a0, an ̸= 0, ht(f ) ≤ H},

where the height of f , ht(f ), is the maximum of the absolute values of

the coefficients. Define Vmon
n (H) analogously. Finally, let

Emon
n (H) := #{f ∈ Vmon

n (H) : Gal(f ) ̸= Sn}
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Then |Vmon
n (H)| ∼ Hn. Van der Waerden [vdW36] showed that

Emon
n (H) = o(|Vmon

n (H)|) (1936)

and conjectured that

Emon
n (H) ≪ |Vmon

n (H)|/H ≈ Hn−1. (conjecture)

We call this van der Waerden’s Conjecture.

There has been a long history of work towards van der Waerden’s

Conjecture, including the development of the large sieve (Gallagher),

larger sieve (Zywina), and probabilistic Galois theory (Dietmann).
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Of particular note is recent work of Chow and

Dietmann [Die13, CD20, CD21]. They show that

#{f ∈ Vmon
n (H) : Gal(f ) = G} ≪ Hn−1+δG+ϵ,

where δG = 1/|Sn/G | is the (reciprocal of the) index of G in Sn. It turns

out that a completely elementary argument shows that if G < Sn and

G ̸= Sn,An, then |Sn/G | ≥ n.

Morally, this means that we have bounds of the shape Hn−1+ 1
n+ϵ for all

subgroups except An. Using a different argument, they show that for the

particular case of An they can show there are at most O(Hn−1+(
√
2−1)+ϵ)

polynomials with Galois group An, and this was the record bound in the

literature.

Remark

This was true. A few months ago, Bhargava announced that he can

prove van der Waerden’s conjecture up to ϵ factor.
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To summarize our approach: we introduce a modified version of the

Selberg sieve and use number theoretic properties as input to a harmonic

analytic argument. Our main quantitative result in this direction is the

following.

Theorem (TA, AG, RLO, DLD, GS, RZ)

Let n ≥ 3 and H ≥ 2. Then

Emon
n (H) ≪ Hn− 2

3+
2

3n+3+ϵ.

And to do this, it suffices really to estimate

#{f ∈ Vmon
n (H) : Gal(f ) ⊆ An}

by the work of Dietmann noted above.
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Recognizing f with Gal(f ) ⊆ An

Let f ∈ Z[x ], and let Disc(f ) ∈ Z be its discriminant. Then Disc(f ) = 0

iff f has a repeated factor, and Disc(f ) ≡ 0 mod p exactly when f mod p

has repeated factors.

Further, suppose that f is monic irreducible of degree n and

G = Gal(f ) ⊂ Sn. Write

f (x) = f1(x) · · · fr (x) (mod p),

where each fi (x) is irreducible modp. Then there is an element of G

with cycle type (deg f1) · · · (deg fr ) (regarded as a permutation group).
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If Gal(f ) ⊂ An, then the reduction of f at any prime must correspond to

a permutation of even cycle type. We will sieve out polynomials that are

not of even type.

To that end, we define odd.

Oddness

Call f ∈ Fp[x ] odd if it has no repeated roots and the permutations

with cycle type corresponding to the factorization type of f are odd.

Let 1oddp denote the odd indicator function mod p, and let 1oddd denote

the product of the odd indicator functions on primes p | d .

This function is enough to set up (but not yet execute) a sieving

argument.
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Broad look on a Selberg sieve

Embed Vmon
n (Z) ⊂ Rn and define a nonnegative Schwarz function

ϕ : Rn → R that’s roughly a bump function around 0. Let λd denote a

sequence of real numbers with support on squarefree indices squarefree

d ≤ D with λ1 = 1. Then trivially

∑
f∈Vmon

n (Z)

ϕ(f /H)

(∑
d

1oddd (f )λd

)2

≥ 0. (1)

When f ∈ Vmon
n (Z) and Gal(f ) ⊆ An, we have that 1oddd (f ) = 0 for all

d > 1, hence (1) is bounded below by∑
f∈Vmon

n (Z)
Gal(f )⊆An

ϕ(f /H).
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Comparing with the direct expansion of (1) gives∑
f∈Vmon

n (Z)
Gal(f )⊆An

ϕ(f /H) ≤
∑
d1,d2

λd1λd2
∑

f∈Vmon
n (Z)

1odd[d1,d2]
(f )ϕ(f /H).

This is the fundamental setup of a Selberg-type sieve: to estimate the

terms on the left, we bound the RHS and then optimize the weights λd . I

ignore λ optimization completely today, and instead describe bounding

the inner sum on the RHS.
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Fourier analysis

To bound the RHS, we’ll use Fourier analysis and a somewhat atypical

application of Poisson summation:

Lemma

Fix d ≥ 2. Let ϕ : Rn −→ C be Schwartz, and let ψd : (Z/dZ)n −→ C
be any function. Let ϕ̂ : Rn −→ C and ψ̂d : (Z/dZ)n −→ C denote the

Fourier transforms

ϕ̂(u) =

∫
Rn

e(⟨x,u⟩)ϕ(x)dx and ψ̂d(u) =
1

dn

∑
x∈(Z/dZ)n

ed(⟨x,u⟩)ψd(x),

where e(x) = e−2πix and ed(x) = e2πix/d . Then∑
x∈Zn

ϕ(x)ψd(x) =
∑
u∈Zn

ϕ̂
(u
d

)
ψ̂d(u).
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The theme is that∑
f∈Vmon

n (Z)

1odd[d1,d2]
(f )ϕ(f /H) = Hn

∑
v∈Zn

ϕ̂

(
vH

[d1, d2]

)
1̂odd[d1,d2]

(v),

and so morally what we need to do is understand 1̂odd[d1,d2]
well.

In fact, one can show that 1̂oddd acts almost-multiplicatively in d , so it

suffices to study it when d is prime.

I briefly describe two ways to study this Fourier transform.
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Method 1: Group actions

Homogenize f to think of it as a binary n-ic form. The group

GL(1)× GL(2) acts on binary forms (GL(1) by multiplication, and GL(2)

by change of basis on (X ,Y )).

One can show that 1oddp is invariant under this action, and then study

Fourier transforms on orbits. There is a Heisenberg principle is in effect:

if Of is the orbit of a particular polynomial f , then we have that

1̂oddp (f )
√

|Of | ≪ 1.

Thus one approach to bound the Fourier transform 1̂oddp is to classify

binary n-ic form orbits. Large orbits have small Fourier transform and can

be ignored, and (hopefully) small orbits can be explicitly understood.

It turns out that this was enough to produce improved bounds to van der

Waerden’s conjecture,

but we did not publish this approach. (However

this is a very powerful method, and we are using it now in other

problems).
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Method 2: Modify the Selberg sieve

Let µp denote the Möbius function on Fp[x ]. Then one can show that on

a monic f of degree n,

1oddp (f ) =
(−1)n+1µp(f ) + µ2

p(f )

2
.

Classical analytic number theory can bound the Fourier transform of

µp(f ) well, but generically the Fourier transform of µ2
p(f ) has large

coefficients (thus is hard to understand).

Instead, we consider

1̃oddp (f ) =
(−1)n+1µp(f ) + 1

2
,

which can take the value 1/2 in addition to 1 and 0.
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Modified sieve

This doesn’t fit into the typical Selberg sieve. But to each f ∈ Vmon
n (Z),

we can define the quadratic form Qf in variables {λd}

Qf ({λd}) =
∑
d1,d2

∏
p|[d1,d2]

1̃oddp (f )λd1λd2 .

We show that Qf is nonnegative definite and bounded below,

Qf ≥ 2−ω(Disc(f ))λ21.

Applying this in the construction of the sieve gives a new relation∑
f∈Vmon

n (Z)
Gal(f )⊆An

Disc(f ) ̸=0

ϕ(f /H)

2ω(Disc(f ))
≤
∑
d1,d2

λd1λd2
∑

f∈Vmon
n (Z)

ϕ(f /H)
∏

p|[d1,d2]

1̃mon
p (f ).

Then we apply the Poisson summation argument indicated above and

optimize sieve weights to get our main result.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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