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The Selberg Class of L-functions

We frequently study the Selberg Class of L-functions. These are Dirichlet

series

L(s) =
∑

n≥1

a(n)

ns

that satisfy

1. Analytic Continuation: L(s) has analytic continuation to C (with

the possible exception of a pole at s = 1).

2. Ramanujan Conjecture: The coefficients grow slowly, |a(n)| ≪ nϵ

for any ϵ > 0.

3. Functional Equation: L(s) can be completed Λ(s) = L(s)QsG (s)

for a (real) number Q and a product of Gamma factors G (s), such

that Λ(s) = ϵΛ(1− s) for some |ϵ| = 1.

4. Euler Product: L(s) has an Euler product L(s) =
∏

p Lp(s) for

“nice” objects Lp(s).
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It turns out that to many objects of arithmetic interest, we can associate

an L-function that is (perhaps conjecturally) in the Selberg Class. And all

of these L-functions are conjectured to satisfy similar properties to the

ζ(s).

For example, a Generalized Riemann Hypothesis is conjectured for

Selberg Class L-functions: all (nontrivial) zeros of L(s) should be on the

line Re s = 1
2 .
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Modular L-functions

One source of L-functions are modular forms. A (weight k , holomorphic)

modular form is a holomorphic function f on the upper half-plane

H = {x + iy : (x , y) ∈ R
2, y > 0}, which transforms in a prescribed way

under the action of a matrix group Γ ⊆ SL(2,Z):

f (γz) := f
(az + b

cz + d

)

= (cz + d)k f (z), γ =
(

a b
c d

)

∈ Γ ⊆ SL(2,Z).

Further, we require f (z) to be holomorphic on the compactified quotient

Γ\H

To each normalized modular (and cuspidal, Hecke) eigenform f , we can

associate an L-function

L(s, f ) =
∑

n≥1

a(n)

ns+
k−1
2

=
∏

p

(

1− αpp
−s

)−1(
1− βpp

−s
)−1

.
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The Delta function

∆(q) = q
∏

n≥1

(1− q
n)24 (q = e

2πiz)

= q − 24q2 + 252q3 + · · ·

is a weight 12 modular form on Γ = SL(2,Z).

The L-function satisfies the functional equation

Λ(s, f ) := (2π)−sΓ(s + 11
2
)L(s, f ) = Λ(1− s, f ).

The Elliptic curve

Y 2 + Y = X 3
− X 2

− 10X − 20. Let

a(p) = (p + 1)−#E(Fp) count deviation from

the expected number of solutions on the curve

over Fp.

Then there is a weight 2 modular form on Γ(11) ⊂ SL(2,Z), whose coefficients

a(p) match exactly the a(p) defined above, and the L-functions associated to

the curve and this modular form are the same and satisfy

Λ(s,E) := (22π)s/2Γ(s + 1/2)L(s,E) = Λ(1− s,E).
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Both of these examples give Selberg L-functions. The analyticity and

functional equation follow from the action of the matrix subgroup of

SL(2,Z) on the modular form. The Euler product comes from the theory

of Hecke operators. The Ramanujan conjecture |a(n)| ≪ nϵ is the

Hasse-Weil Bound on elliptic curves (for L(s,E )) or the highly nontrivial

Deligne’s Bound [Del71] (for general modular L(s, f )).

First zeros of L(s, E) First zeros of L(s,∆)
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No Euler products

Of the four requirements of the Selberg Class (analyticity, Ramanujan

conjecture, a functional equation, and an Euler product), the most

surprising to me is the Euler product. The other requirements all feel very

“analytic”, but the Euler product is feels fundamentally “arithmetic”.

But it’s known that a (nice) Euler product is essential to results like RH.
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Davenport–Heilbronn series

For example, Davenport and Heilbronn [DH36] studied a Dirichlet series

formed from a particular linear combination of Dirichlet L-functions,

L(s) =
1− iθ

2
L(s, χ) +

1 + iθ

2
L(s, χ),

where θ is a particular constant and χ = χ5(2, ·) is the unique primitive

character mod 5 with χ(2) = i . Then L(s) satisfies the functional

equation

Λ(s) := L(s)Γ( s+1
2 )(5/π)s/2 = Λ(1− s),

but has infinitely many zeros on the critical line and infinitely many zeros

in the half-plane Re s > 1.

The exceptional zeros appear to be sporadic: there are four zeros off the

critical line with 0 < Im s < 200. Nonetheless, one can show there are

infinitely many.
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My Original Motivation

More generally, we expect that any Dirichlet series that satisfies the first

three requirements of the Selberg class but not an Euler product should

fail to satisfy a Riemann Hypothesis.

Until 2018, the only sort of example of this

sort of not-quite-Selberg Dirichlet series and

analysis I’d seen were formed from linear

combinations of Selberg Class L-functions,

like the Davenport–Heilbronn series.

But there is a class of Dirichlet series coming from half-integral weight

modular forms, which (we think) aren’t linear combinations of Selberg

Class L-functions, and which don’t have a multiplicative structure.
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Half-integral weight modular forms

A modular form of half-integral weight k (so k here is in 1
2 + Z) is a

holomorphic function on H that transforms in a prescribed way under the

action of a discrete subgroup Γ ⊆ SL(2,Z), satisfying

f (γz) = j(γ, z)k f (z)

for a half-integral factor of automorphy j(γ, z). In the remainder of this

talk, I’ll consider the cocycle

j(γ, z) = ε−1
d

( c

d

)√
cz + d , εd =

{

1 d ≡ 1 mod 4,

i d ≡ 3 mod 4.

As with full-integer weight forms, we require that f be holomorphic at all

the cusps and to have a Fourier expansion

f (z) =
∑

n≥0

a(n)e(nz).
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Dirichlet series

Half-integral weight cusp forms of weight k on a matrix group Γ form a

complex vector space Sk(Γ). To any such cuspform

f (z) =
∑

n≥1 a(n)e(nz), one can associate a Dirichlet series

L(s, f ) =
∑

n≥1

a(n)

ns+
k−1
2

,

but these Dirichlet series won’t have Euler products, even if f is a Hecke

eigenform.

Each such Dirichlet series have analytic continuation to C and satisfy a

functional equation of the form

QsL(s, f )G (s) = ϵQ1−sL(1− s, g)G (1− s),

where g is a modular form related to f via an involution of the form

g(z) ≈ f (1/Nz). But in general (in contrast to the full-integral case), g

is not a cusp form in the same space Sk(Γ) — in general g can transform

with a quadratically twisted factor of automorphy χN(γ)j(γ, z)
k .

13



A priori, there are thus two differences between Dirichlet series coming

from half-integral weight modular forms and the Selberg class: a typical

half-integral weight modular form doesn’t yield a symmetric functional

equation, and the Dirichlet series won’t have an Euler product.

However, for Hecke eigenforms on Γ0(4N), for N squarefree, it is possible

to choose a related form with a symmetric functional equation.

Lemma

Let f (z) be a Hecke eigenform of half-integral weight k on Γ0(4N) with

(full-integer) weight 2k − 1 Shimura correspondent F . Then there is

Hecke eigenform g of weight k on Γ0(16N
2) that also has Shimura

correspondent F and whose Dirichlet series satisfies the symmetrical

functional equation

Λ(s, g) = QsL(s, g)G (s) = ϵΛ(1− s, g)

for some |ϵ| = 1.

(Aside: Frequently one can take g to be on Γ0(4N
2)).
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We now consider only those symmetrized half-integral weight forms.

Each such form has a Dirichlet series L(s, g) =
∑

n≥1 A(n)n
−s that has

analytic continuation to C and a symmetric functional equation (Selberg

class requirements 1 and 3). Further, one can show

∑

n≤X

|A(n)|2 ∼ cgX ,

so that the Ramanujan Conjecture A(n) ≪ nϵ is true on average.

Such a Dirichlet series L(s, g) is very similar to a Selberg Class L-function

like ζ(s). Classical proofs that completely avoid the Euler product and

that don’t expect the logarithmic derivative L′/L to behave carry through.
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For example, one can prove the following results: three are typical (in the

Selberg class sense) and two are a bit atypical (in that they’re trivial or

vacuous for the Selberg class).

Theorem

• L(s, g) has on the order of T logT nontrivial zeros with

0 < Im s < T.

• L(s, g) has at most logT zeros (counting multiplicity) in any strip

T < Im s < T + 1.

• For any ϵ > 0, almost all (i.e. 100 percent of the) zeros of L(s, g)

occur within ϵ of the critical line.

• All nontrivial zeros of L(s, g) are constrained to a strip

1− A < Re s < A. (But typically A > 1).

• If L(s, g) has at least one zero in the region Re s > 1, then L(s, g)

has infinitely many, and there are Ω(T ) in the region 0 < Im s < T.
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These are zeros of the unique half-integral weight modular form g of

weight 9/2 on Γ0(4) (a form appearing in Shimura’s paper [Shi73]). If

η(z) = e(z/24)
∏

n≥1(1− e(nz)) is the Dedekind η function (a 24th root

of ∆(z)), then this form is g(z) = η(2z)12θ(z)−3.
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Yoshida [Yos95] computed the first couple dozen of these zeros in 1995.
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About 70 percent of the zeros in this image are on the critical line.
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To find the zeros, we use a triple of techniques.

1. Zeros on the critical line

2. Quick heuristic methods for zeros off the critical line

3. Verification and checking for zeros off the critical line

Finding zeros on the critical line can be done pretty quickly with an

analog of the Hardy Z function. There is a sign ϵ1 such that ϵ1Λ(s, g) is

real valued on the critical line. Then one computes Λ(s, g) and looks for

sign changes.

Theorem

For each symmetrized L-function L(s, g), there are infinitely many zeros

on the critical line.
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Zeros off the critical line

To find zeros off the critical line, we’ve turned towards using Newton’s

Method of root finding (which works very well when it works, as L(s, g)

is complex analytic and all roots we’ve found are single roots).

That is, we compute several iterations of the map

sn = sn−1 −
L(sn−1, g)

L′(sn−1, g)

on a mesh of points. We ignore iterations that diverge and collect the

various remaining candidate zeros for later verification.

To verify counts and locations of zeros, we numerically compute integrals

1

2πi

∫

C

L′(z , g)

L(z , g)
dz

over contours C around heuristic zeros. By the argument principle, this

integral gives the number of zeros (with multiplicity) inside the contour.
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A weight 9/2 form on Γ0(12).
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There don’t seem to be any zeros outside of the critical strip. (I don’t

know how to show that these do or don’t occur).
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Approximately 65 percent of these zeros are on the critical line.
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We can investigate statistics concerning the zeros as well. One nontrivial

statistic is the pair correlation. For Selberg L-functions, the pair

correlation is defined in terms of the spacing between the nontrivial zeros,

weighted so that the expected spacing is 1 on average. Here, as we have

lots of “exceptional” zeros, it’s not clear what the right analogue is.

We investigated the pair correlation between the imaginary parts of zeros,

normalized so that the typical spacing is 1 on average. That is, if

ρn = σn + iγn is the nth zero, then we consider spacings

δn = c(γn+1 − γn) log c
′γn,

where c and c ′ come from the zero count N(T ) of zeros up to height T .

Then the pair correlation function is the distribution ϕ(u) such that as

M,N → ∞,

1

M

{

(n, k) : N ≤ n ≤ N+M, k ≥ 0, δn+· · ·+δn+k ∈ [α, β]
}

∼
∫ β

α

ϕ(t)dt,

(if this function exists).
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The Montgomery Pair Correlation

Conjecture posits that the pair

correlation function for ζ(s) is

1−
( sin(πx)

πx

)2
.

Computationally, the pair correlation

function for the (normalized

differences between imaginary parts

of the) zeros of the weight 9/2 form

on Γ0(4) look like the figure at right.

Qualitatively, these look similar. There is a similar repulsion phenomenon

initially, and the shape is roughly similar. But they’re also clearly not the

same.
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Let’s examine estimated pair correlation functions for other forms.

75k zeros of a weight 13/2 form on Γ0(4)

70k zeros of a weight 15/2 form on Γ0(4)

40k zeros of a weight 9/2 form on Γ0(12)

10k zeros of another weight 9/2 form on Γ0(12)
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All five computed pair correlation approximations, plotted together.

Notice how structurally similar they are, despite coming from different

modular forms and over different ranges of zeros.

We don’t know how to explain this.
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We don’t quite know where we’re going, but what started as a purely

exploratory investigation into a niche between linear combinations of

L-functions and the Selberg class has transformed into an interesting

little chestnut.

To end, I’ll put (color coded) histograms of the real parts of the zeros

we’ve computed for these five forms.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).

31



References i

Andrew R Booker and David J Platt.

Turing’s method for the selberg zeta-function.

Communications in Mathematical Physics, 365(1):295–328, 2019.

P. Deligne.

Formes modulaires et représentations l-adiques.
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