
Computing and Verifying Maass Forms

David Lowry-Duda

February 2021

ICERM

Brown University



Acknowledgements

This is a project I’ve begun since joining the Simons Collaboration on

Arithmetic Geometry, Number Theory, and Computation. I’ve collected a

large amount of data associated to Maass forms, but there remains a lot

to compute and a lot to prove.

In this talk, I’ll touch on work done with several collaborators. In

particular, I’ve been working with Andrew Booker (Bristol) and Drew

Sutherland (MIT) on computational aspects, and Min Lee, Jonathan

Bober, Andrei Seymour-Howell, and Andrew Booker (all at Bristol) with

theoretical aspects.

I should also note that I’ve had the benefit of several helpful

conversations with David Farmer (AIM), Sally Koutsoliotas (Bucknell),

Stefan Lemurell(Chalmers), Fredrik Strömberg (Nottingham), and the

rest of the Simons Collaboration.

1



Talk overview

Maass forms

Hejhal’s algorithm

Linearization, Turing’s method and large scale computation

Rigorous verification

2



Maass forms

Maass forms

Hejhal’s algorithm

Linearization, Turing’s method and large scale computation

Rigorous verification

3



Motivation: why study Maass forms?

Maass forms are solutions to the real-analytic eigenvalue problem of the

Laplacian on modular surfaces. They’re both highly structured and very

mysterious.

Maass forms extend the classical theory of Dirichlet series with Euler

products and the theory of classical holomorphic modular forms. The

spectral theoretic decomposition into Maass forms led to the discovery of

Selberg’s trace formula, which connects the spectrum to the underlying

geometry.

Personally, I frequently use spectral theory and poor understanding of

Maass forms is the most common major obstruction I face.

4



For this talk, a Maass form will be a weight 0 Maass cuspform on a

congruence subgroup of SL(2,Z). Specifically, let Γ < SL(2,Z) be a

congruence subgroup. The modular surface X = Γ\H is a finite

non-compact surface. The Laplacian ∆ on this surface is

∆ = −y 2(∂2/∂x2 + ∂2/∂y 2).

We call a function f : H −→ C a Maass cuspform if

1. f is real analytic, f ∈ C∞(H),

2. f is an eigenfunction of the Laplacian, ∆f = λf ,

3. f is automorphic, f (γz) = f (z) for all γ ∈ Γ,

4. f is square integrable, f ∈ L2(X ), and

5. f vanishes at all the cusps of X .

5



Selberg famously conjectured that (for congruence subgroups Γ) that the

eigenvalue λ is either 0 or λ ≥ 1
4 . An eigenvalue λ ∈ (0, 1

4 ) would be

called exceptional, though we’ve never seen one.

This Selberg eigenvalue conjecture (SEC) is analogous to the

Ramanujan–Petersson Conjecture (RPC). We describe this now.

6



Given a classical (weight k Hecke) holomorphic cusp form

g(z) =
∑
n≥1

a(n)n
k−1

2 e2πinz ,

one can associate an L-function

L(s, g) =
∑
n≥1

a(n)

ns
=
∏
p

Lp(s),

where Lp(s) is (generically) of the form

Lp(s) = (1− βp,1p−s)−1(1− βp,2p−s)−1.

The RPC asserts that |βp,j | = 1, or equivalently that logp|βp,j | = 0.

For holomorphic cusp forms, the RPC is known and follows from

Deligne’s celebrated proof [Del71].

7



To each Maass form, there is also an associated L-function. In its

completed form, the L-function associated to a Maass form f has the

shape

Λ(s, f ) = L∞(s)
∏
p

Lp(s),

where (for generic p)

Lp(s) = (1− αp,1p−s)−1(1− αp,2p−s)−1

L∞(s) = ΓR(s − µ∞,1)ΓR(s − µ∞,2).

Here, L∞(s) is the “factor at ∞” and consists of a pair of gamma

functions ΓR(s) := π−s/2Γ(s/2).

The parameters µ∞,j are closely related to the eigenvalues, and SEC

states that Reµ∞,j = 0 while RPC states that logp|αp,j | = 0.

The best progress towards these conjectures for Maass forms are due to

Kim and Sarnak, who showed that |Reα∞,j | and
∣∣ logp|αp,j |

∣∣ are bounded

above by 7
64 [KS03].

8



Finally, each function g ∈ L2(Γ\H) has a spectral expansion of the shape

g(z) =
∑

f Maass cuspform

〈g , f 〉f (z)

+
∑

Eisenstein

∫
〈g ,E (·, u)〉E (z , u)du

+ (a constant).

My most common hammer in my tool belt is to take averages, represent

everything in terms of the spectral decomposition, and roll up my sleeves

and do complex analysis on what remains. The Maass forms that appear

in these expansions are typically the barrier to better results.

(This has been the case in all but one of my papers with my frequent

collaborator Alex Walker).

9



Maass forms in the LMFDB

The L-function and modular form database (https://LMFDB.org) is an

online database of L-functions, modular forms, abelian varieties, and their

relationships.

There is currently heuristic data for nearly 15000 Maass forms in the

LMFDB, available through the portal

https://www.lmfdb.org/ModularForm/GL2/Q/Maass/. But we know

how to compute more data and to make these computations rigorous.

10

https://LMFDB.org
https://www.lmfdb.org/ModularForm/GL2/Q/Maass/


Hejhal’s algorithm

Maass forms

Hejhal’s algorithm

Linearization, Turing’s method and large scale computation

Rigorous verification

11



Methods for the computation of Maass forms have been considered and

developed by several authors since the 1970s. Today, I’ll describe my

preferred method (for GL(2) type Maass forms): Hejhal’s algorithm.

In my experience, Hejhal’s algorithm is faster and more accurate

compared to earlier methods. On the other hand, Hejhal’s algorithm is

not rigorous (although in practice it always produces reliable results).

We’ll return to the topic of rigorous evaluation later.

The algorithm that Hejhal described apply for the computation of Maass

forms for cofinite Fuchsian groups Γ such that Γ\H has exactly one cusp,

but I’ll also describe the necessary adjustments for when Γ\H has

multiple cusps, as is the case for general congruence subgroups Γ.

12



Maass form Fourier expansion

It is easiest to first describe using Hejhal’s algorithm to compute a known

Maass newform. Let us fix a Maass form f with eigenvalue λ = 1
4 + R2.

Then f has a Fourier expansion

f (z) =
∑
n≥0

c(n)
√

yκiR(2π|n|y)e(nx). (1)

Here and later, we use the notation e(nx) = e2πinx and

κiR(u) = eπR/2KiR(u), where Kα(u) is the modified K -Bessel function of

the second kind.

In this normalization, κiR(u) is an oscillating function of u for 0 < u . R

with amplitude roughly of size 1, and then it decays exponentially for

u & R.

Note that in terms of (1), we interpret our goal of computing a Maass

form to mean to find the eigenvalue parameter R and the coefficients

c(n).

13



The coefficients c(n) satisfy the trivial Hecke bound c(n) = O(
√

n) (in

fact, much better bounds are known). We can further assume that

c(1) = 1. Let us fix a desired error bound 10−D . Then there is a

decreasing function M(y) = M(y ,R) such that

f (x + iy) =
∑

|n|≤M(y)

c(n)
√

yκiR(2π|n|y)e(nx) + [[10−D ]],

(where we use [[10−D ]] to mean a quantity of absolute value strictly less

than 10−D).

Thus we can view f (x + iy) as a finite Fourier series in x up to a small,

controlled error.

14



f (x + iy) =
∑

|n|≤M(y)

c(n)
√

yκiR(2π|n|y)e(nx) + [[10−D ]].

The finite Fourier series part of the sum is essentially a discrete Fourier

transform. If we choose equally spaced points along a horocycle

{zm = xm + iY : xm =
1

2Q
(m − 1

2 ), 1− Q ≤ m ≤ Q},

(with Q > M(Y )), then we can invert this transform to see that

c(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

f (zm)e(−nxm) + [[10−D ]].

For fixed R and Y , we can vary n to get essentially a linear system in the

coefficients c(n) — but this system is currently a tautology.

15



We make this system non-tautological by using the automorphy of f ,

that f (γz) = z for all γ ∈ Γ. To accomplish this, for the points

zm = xm + iY in our horocycle, we choose Y small enough so that part

of the horocycle will be outside fixed fundamental domain for Γ\H.

Then we pullback each zm to a point z∗m in the fundamental domain. The

result is that

c(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

f (zm)e(−nxm) + [[10−D ]].

becomes

c(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

f (z∗m)e(−nxm) + [[10−D ]].

If instead of a congruence subgroup, we were considering SL(2,Z)\H, we

would be done. We could expand each f (z∗m) in its own (essentially

finite) Fourier series, repeat for several n, and get a linear system with

unknowns c(n). This is the classical algorithm of Hejhal.

16



Expansions at all the cusps

But when Γ\H has multiple cusps, the resulting linear system is typically

very poorly-conditioned. Heuristically this is because several points

zm = xm + iY might still be in the fundamental domain, and thus

f (zm) = f (z∗m) for these points — the system is insufficiently mixed by

the modularity.

To resolve this, we work not just with the Fourier expansion of f at ∞.

We instead work simultaneously with the Fourier expansions f` at each

cusp `. That is, in terms of the Fourier expansions f`(z) = f (σ`z), where

σ`∞ = ` is a cusp normalization map.

For each point z∗ in the fundamental domain, we identify the nearest

cusp ` = `(z∗). (By nearest, we mean the cusp with respect to which z∗

has the greatest height). Then we represent the value f (z∗) in terms of

the Fourier expansion f`.

17



(This is the lots-of-bookkeeping aspect of the approach). In order to set

up the extended system, we must enlarge our linear system to include

horocycles associated to the expansion at each cusp and solve for all

expansions simultaneously. For each cusp j , we have an expansion

fj(z) =
∑
n 6=0

cj(n)
√

yκiR(2π|n|y)e(nx)

and we can set up the system

cj(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

fj(zm)e(−nxm) + [[10−D ]]

as before.

18



We now have the system

cj(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

fj(zm)e(−nxm) + [[10−D ]].

Let zmj = σjzm, so that fj(zm) = f (zmj), and let z∗mj be the pullback of

zmj to the fundamental domain, expressed in coordinates of the nearest

cusp `. Then we recognize f (zmj) as f`(z∗mj), and in total

cj(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

f`(z∗mj)e(−nxm) + [[10−D ]].

19



Lemma
It is possible to choose Y small enough such that z∗mj 6= zmj for all j and

m. Further, the imaginary parts of each resulting z∗mj are bounded below

by a computable constant Y0 (which depends on the level of the

congruence subgroup).

It is the nontrivial mixing coming from fj(zm) and f`(z∗mj) that gives a

non-tautological system, allowing us to solve for the Fourier coefficients

in the linear system.

20



Solving for the coefficients

In summary, given an input eigenvalue λ = 1
4 + R2, we can set up the

system

cj(n)
√

YκiR(2π|n|Y ) =
1

2Q

Q∑
1−Q=m

f`(z∗mj)e(−nxm) + [[10−D ]].

If we choose the Y in the horocycles as in the Lemma, then

Im(z∗mj) > Y0 for all m and j , so we can truncate each Fourier series f` on

the right at the same point M0 = M(Y0) while guaranteeing a uniform

error bound. Expanding each finite Fourier series and collecting

coefficients, we get that

cj(n)
√

YκiR(2π|n|Y ) =
∑

cusps`

∑
1≤|k|≤M0

cj(k)Vnkj` + 2[[10−D ]]

for complicated-but-computable coefficients Vnkj` (that are just

complicated combinations of K -Bessel functions). Considering this for

each |n| ≤ M0 gives a linear system that can be solved.

21



Structurally, we have constructed a homogeneous linear system V~c = 0

for a computable matrix V = V (R,Y ) consisting mostly of linear

combinations of Bessel functions and an unknown vector of coefficients ~c .

We can use the assumption c(1) = 1 to de-homogenize the linear system

and to facilitate solving for the coefficients.

It should be noted that a priori, it is not obvious that the resulting linear

system will be well-conditioned. This would be a necessary ingredient to

conclude that this algorithm would always succeed, but this is unknown.

However, in my experiments it seems that whenever we choose Y small

enough so that zmj 6= z∗mj for all m and j , the resulting system is solvable

and gives approximately D correct digits of accuracy for the coefficients.

22



There are frequently relations between the cusps that allow one to reduce

the dimension of the linear system. In particular, there are

Hecke-operator type symmetries (Fricke involutions) that connect Fourier

expansions at cusps.

I’ll also remark that all the work here carries through even when there is

a nontrivial nebentypus, except that one must track the character and

how it carries through the cusp-normalizing maps σ`. (This is simply

additional bookwork).

23



Linearization, Turing’s method

and large scale computation

Maass forms

Hejhal’s algorithm

Linearization, Turing’s method and large scale computation

Rigorous verification

24



In the description of Hejhal’s algorithm, we initially began with a known

eigenvalue λ = 1
4 + R2. It remains to actually find these eigenvalues.

In fact, the algorithm above works for any R and yields a homogeneous

linear system V (R,Y )~c = 0. When R comes from a true eigenvalue, the

resulting coefficients should be independent of the input Y (as long as Y

is small enough for the Lemma to apply). In practice, when R is far from

a true eigenvalue, it appears that the resulting coefficients vary rapidly as

Y changes.

One approach to find the actual eigenvalues (which was the approach I

was using until this January) would be to create a cost function cost(R)

that is large when R is far from a true eigenvalue and small when R is

(presumably) near a true eigenvalue, evaluate cost(R) on a mesh, and

minimize it. In practice, this worked extremely well if I had a good initial

approximation to an eigenvalue, but it was computationally expensive to

repeatedly run to try to find initial approximations.

25



I’ve instead moved to linearization as a tool to find eigenvalues.

Abstractly, we can rephrase this goal as trying to determine R so that the

linear system V (R,Y )~c ≈ 0 has nontrivial solutions ~c and for which

these solutions are independent of the height Y of the horocycle (which I

now suppress from the notation). Given a guess R̃, we can linearize with

respect to R and write

V (R̃ + h)~c =
(

V (R̃) + hV ′(R̃) +
h2

2
Err(R, h)

)
~c .

26



V (R̃ + h)~c =
(

V (R̃) + hV ′(R̃) +
h2

2
Err(R, h)

)
~c .

If the error weren’t there, we could rewrite V (R̃ + h)~c ≈ 0 as

V ′(R̃)−1V (R̃)~c = −h~c .

If V ′(R) is nonsingular, then solving for h becomes a question of

determining eigenvalues of the LHS. Solving for the smallest eigenvalue h

gives a new approximate eigenvalue R̃ + h. The approximation can be

refined iteratively to yield an eigenvalue.

In practice, if R̃ is close to a true eigenvalue R, then this iterative

refinement gives a good estimation of a true eigenvalue.

27



To find several eigenvalues, one would then choose a mesh of candidates

0 < R̃1 < R̃2 < R̃3 < · · · < R̃max

sufficiently close together (based on the Weyl law and expected

differences between eigenvalues, for instance), linearizing, and iteratively

improving.

There are several caveats, but this technique has been employed by

Holger Then to compute 200000 eigenvalues of Maass cusp forms on

SL(2,Z)\H [The12], and I’m currently adjusting this for higher level

forms.

28



What about missing eigenvalues?

At several steps, we have followed heuristic evaluations. But it is

inevitable that we will miss some eigenvalues. In order to detect whether

there are eigenvalues missing from a collection of eigenvalues, we can

turn to Weyl’s Law.

Let

N(r) = #{λ : 1
4 ≤ λ ≤

1
4 + r 2‖

count the number of eigenvalues in the interval [ 1
4 ,

1
4 + r 2]. The Average

Weyl’s law says that

N(r) = M(r) + S(r),

where M(r) is a smooth main term approximation and the average value

of the Weyl remainder S(r) tends to 0 in the limit as r →∞.

29



It is possible to derive Weyl’s law explicitly. For example, on the classic

modular surface:

Theorem (Average Weyl’s Law)
On SL(2,Z)\H, we have

M(r) =
1

12
r 2 − 2r

π

r

e
√
π/2
− 131

144
.

It is sometimes also possible to derive Turing bounds for the error.

Theorem (Booker and Strömbergson)
Define

E (r) =
(

1 +
6.6

log r

)( π

12 log r

)2

.

Then SL(2,Z)\H, we have that

−2E (r) <
1

r

∫ r

0

S(r)dr < E (r).

30



Let’s see how this works in practice. The error term S(r) oscillates

around zero. Let N found(r) count the number of found eigenvalues in

[1/4, 1/4 + r 2]. Then we consider

S found(r) := N found(r)−M(r) ≈ S(r).

Once an eigenvalue is missed, S found(r) deviates sharply from the

otherwise small S(r). On a graph of the mean value of S found , this looks

like

320 340 360 380 400 420 440 460
0.05

0.00

0.05

31



This is approach frequently employed by Holger Then in his computations

of Maass forms. Detecting a missed eigenvalue on the moonshine group

Γ0(6)+:

Or detecting missed eigenvalues for SL(2,Z)\H:

32



When Turing bounds are available, these methods can be used to prove

that no eigenvalues have been missed. But for most congruence

subgroups, there aren’t known Turing bounds and deriving them seems

difficult.

This is a problem I’m working on with my collaborators, but we haven’t

fully resolved this rigorously yet.

But heuristically, with an average Weyl law (or even with a heuristic

average Weyl law), this method works pretty well.

33



First 50 eigenvalues for SL(2,Z)

91.1413453 148.432131 190.131547 206.416795 260.687405

277.281364 314.906630 330.795773 377.521632 379.904073

404.529171 454.613156 461.599913 492.853552 519.447625

538.554784 541.450274 581.655554 596.572502 627.795328

667.244864 679.212963 684.181573 699.693619 744.687610

747.326931 771.751770 813.085934 814.253563 833.345533

849.249008 873.239051 994.175385 996.679743 1057.02772

1082.07907 1158.14690 1187.48464 1260.66683 1284.87576

1345.49289 1358.64049 1430.98609 1467.39096 1534.38888

1553.20356 1582.19105 1644.01332 1655.81757 1727.11603

34



First 50 eigenvalues for Γ0(5)

9.42106297 17.086429 17.326764 24.232910 29.802058

32.8064563 36.901259 40.588036 41.961917 46.810520

53.9133074 57.787055 64.034965 64.546059 67.919477

69.0520113 72.160668 78.005312 78.055469 86.318254

88.5614566 96.946006 101.16851 105.23669 106.48480

110.509306 113.27141 120.89757 123.30748 124.66026

125.273302 127.56603 134.82249 136.96036 141.16706

144.689979 147.16315 151.88883 159.92051 160.48779

161.944167 165.51281 169.26726 171.76540 175.01274

181.663468 184.53461 186.50137 187.92101 189.58619

35



Rigorous verification

Maass forms

Hejhal’s algorithm

Linearization, Turing’s method and large scale computation

Rigorous verification

36



Let us now suppose that we have used Hejhal’s algorithm (or possibly

another algorithm) to determine a possible eigenvalue λ̃ = 1
4 + R̃2 and

the coefficients of a possible Maass form f̃ with that eigenvalue.

In 2006, Booker, Strömbergson, and Venkatesh proved that it is possible

to certify whether this candidate Maass form is in fact “very close” to a

true Maass form. [BSV06]

In particular, over SL(2,Z) they showed that if f̃ is “almost

automorphic” (i.e. almost invariant under the group action), then f̃ is

“very close” to a true Maass cusp form f .

37



Small bit of intuition

The idea underlying their proof is that if

‖(∆− λ̃)f̃ ‖2
2 (2)

is small, then by the spectral expansion almost all of the spectral support

of f̃ is concentrated near λ̃. (This is true for general square integrable

functions f̃ as well).

Then the task is to determine bounds for (2). For a few technical

reasons, it ends up being necessary to determine bounds for a smoothed

version f̃S (smoothed by convolving with a certain kernel function).

By virtue of the Fourier expansion in K -Bessel functions of f̃ , we get that

(∆− λ̃)f̃ vanishes on the fundamental domain, and is invariant under

translation by Z also due to the Fourier expansion. For the smoothed

version f̃S , this is true except in a small neighborhood of the arc at the

bottom of the fundamental domain.

38



By making these bounds explicit, one can prove the following theorem.

Theorem (BSV)

Let B(δ) be a hyperbolic δ-neighborhood of the arc

{z ∈ H : |z | = 1, |Re z | ≤ 1/2}, and let f̃Γ denote the

SL(2,Z)-periodized extension of f̃ from the fundamental domain to H.

With the notations as above, there exists a true Maass cusp form on

SL(2,Z)\H with eigenvalue λ satisfying

|λ− λ̃| < C (f̃ , δ, R̃)ess supz∈B(δ)|f̃ (z)− f̃Γ(z)|

for a computable constant C (f̃ , δ, R̃).

And thus to certify a candidate Maass form on the full modular group, it

suffices to compute the constant C and bound the deviation from proper

automorphicity.

39



Ongoing work

BSV implemented this to certify the first 10 eigenvalues on SL(2,Z) to

over 1000 decimal places (and analyzed algebraic properties and

transcendentality of the numbers).

I’m currently working on large scale (lower quality but faster) verification

for Maass forms.

I hope to have completed heuristic computation for many congruence

subgroups soon, with additional computation verification shortly

afterwards.

40



Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).

40



References i

Andrew R Booker and David J Platt.

Turing’s method for the selberg zeta-function.

Communications in Mathematical Physics, 365(1):295–328, 2019.

Andrew R Booker, Andreas Strömbergsson, and Akshay Venkatesh.

Effective computation of maass cusp forms.

International mathematics research notices, 2006.

P. Deligne.

Formes modulaires et représentations l-adiques.

Séminaire N. Bourbaki, 355:139–172, 1971.

Jay Jorgenson, Lejla Smajlović, and Holger Then.

On the distribution of eigenvalues of maass forms on certain

moonshine groups.

Mathematics of Computation, 83(290):3039–3070, 2014.



References ii

H. Kim and P. Sarnak.

Refined estimates towards the Ramanujan and Selberg

conjectures.

J. Amer. Math. Soc., 16:175–181, 2003.

Holger Then.

Large sets of consecutive maass forms and fluctuations in the

weyl remainder.

arXiv preprint arXiv:1212.3149, 2012.


	Talk overview
	Maass forms
	Hejhal's algorithm
	Linearization, Turing's method and large scale computation
	Rigorous verification
	Appendix

