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Much of this talk can be considered as a variety of approaches to

problems of the flavor of the Gauss circle problem.

Gauss circle problem

How many integer lattice points are contained in a circle of radius
√

N

centered at the origin? Equivalently, how many integer solutions are

there to X 2 + Y 2 ≤ N?

I’ll use S2(N) to denote this number.

We can phrase this in terms of

r2(n) := #{(a, b) ∈ Z2 : a2 + b2 = n},

as then

S2(N) =
∑
n≤N

r2(n).
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This is a very old problem, and a very famous problem. Over 200 years

ago, Gauss noted that S2(N) is approximately the volume of the ball, and

further

S2(N)− Vol B(
√

N)�
√

N.

Conjecture

S2(N)− Vol B(
√

N)� N
1
4+ε.

Most approaches to this problem have used a combination of harmonic

analysis, modular forms, and (variants of) the circle method. The best

current bound is due to Heath-Brown [HB99], who showed that

S2(N)− Vol B(
√

N)� N
131
416+ε.
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I’m going to describe a few approaches to this problem, and its variants,

in this talk.

Around the start of the 20th century, Sierpiński used basic harmonic

analysis to show the first improvement over Gauss, that

S2(N)− Vol B(
√

N)� N
1
3 .

The argument is very direct.

Let χt(x) denote the characteristic function of the disk of radius t

centered at the origin. Fix δ < 1 (which we’ll choose in a moment),

define p : R2 −→ [0,∞) by 1
πδ2χδ(x), and define the smoothed function

ft(x) = χt ∗ p(x) =

∫
R2

χt(x − y)p(y)dy .

Then ft(x) is 1 if ‖x‖ ≤ t − δ, is 0 if ‖x‖ ≥ t + δ, and is between 0 and 1

between.
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The function ft is a smoothed indicator function for points in the disk.

Define

S(t) :=
∑
z∈Z2

ft(z).

Then

S(
√

n − δ) ≤ S2(n) ≤ S(
√

n + δ),

and so understanding the smoothed sum S gives approximations for our

desired sum S2.

The smoothed sum S is sufficiently smooth to allow Poisson summation,

so in fact what one does is compute

S(t) =
∑
z∈Z2

f̂t(z) =
∑
z∈Z2

χ̂t(z)p̂(z).

The Fourier transforms can be explicitly computed, and are given

(essentially) by the J1 Bessel function.

The main term comes from χ̂t(0) = πt2 and p̂(0) = 1, and the error

term comes from trying to optimize the choice ot δ to minimize the error

from the rest of the summation.
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Mean square estimates

Hardy and Littlewood showed that on average, the correct exponent is 1
4 .

That is, they showed that

1

X

∫ X

0

∣∣S2(r)− Vol B(
√

r)
∣∣2dr = cX

1
2 + O(X

1
4+ε),

and also that

S2(N)− Vol B(
√

N) = Ω(N
1
4 ),

giving stronger inclination that the “correct” order of growth is 1
4 in the

exponent.
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Connections to modular forms

It turns out that this question is strongly analogous to a similar question

on modular forms. We describe that now.

A weight k holomorphic modular form is a holomorphic function f on the

upper half-plane H = {x + iy : (x , y) ∈ R2, y > 0}, which satisfies a set

of “periodicity” conditions

f
(az + b

cz + d

)
= (cz + d)k f (z), γ =

(
a b
c d

)
∈ Γ ⊆ SL(2,Z),

and which is holomorphic at ∞, which translates to f having a Fourier

expansion

f (z) =
∑
n≥0

a(n)e(nz),

(and with a few similar holomorphy conditions that are equivalent to

properties of Fourier expansions).
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A holomorphic cuspform is a holomorphic modular form with zero

constant coefficient in its (various) Fourier expansions:

f (z) =
∑
n≥1

a(n)e(nz).

The Fourier coefficients of modular forms are well-studied and often

correspond to arithmetic quantities. A celebrated theorem of

Deligne [Del71] that

a(n)� n
k−1
2 +ε.

8



Analogously to the Gauss circle problem, we can consider the sum

Sf (X ) =
∑
n≤X

a(n).

By the Deligne bound a(n)� n
k−1
2 +ε, we have trivially that

Sf (X )� X
k−1
2 +1+ε,

and if we had square-root cancellation we might expect

Sf (X )� X
k−1
2 + 1

2+ε.
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Chandrasakharan and Narasimhan [CN62] showed a mean square estimate

parallel to that of Hardy and Littlewood for the Gauss circle problem:

1

X

∫ X

0

∣∣Sf (t)
∣∣2dt = cX k−1+ 1

2 + O(X k−1+ε)

Thus as in the Gauss circle problem, we actually conjecture 1/4 as the

“correct” exponent.

Conjecture

Sf (X )� X
k−1
2 + 1

4+ε.
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The flavor of Chandrasakharan and Narasimhan’s method1 applies

broadly, and actually offers a united approach to both the Gauss circle

problem and to the problem of estimating sums of Fourier coefficients of

holomorphic cusp forms.

The idea is to start with a Dirichlet series

L(s, f ) :=
∑
n≥1

a(n)

λsn

that satisfies a functional equation of the form

L(s, f )G (s) = L(1− s, g)G (1− s),

where G (s) is a product of Gamma functions and L(s, g) is a “dual”

Dirichlet series

L(s, g) =
∑
n≥1

b(n)

µs
n

.

1which perhaps should actually called Landau’s method, but Stigler’s Law of

Eponymy applies here too
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Then to study the partial sums
∑

n≤X a(n), CN actually examines a

smoothed form (expressed as a Mellin transform) of the Dirichlet series

1

2πi

∫ c+i∞

c−i∞
L(s, f )X s+δ Γ(s)

Γ(s + δ + 1)
ds.

The idea is that the Gamma functions and basic growth estimates

guarantee nice convergence, so one can use Cauchy’s residue theorem to

shift the line of integration to the left. The “main terms” will be

recognized as poles of L(s), and the size of the remainder will be

determined by the size of the remaining integral.

It’s instructive to examine this in a small bit of additional detail.
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Beginning with

1

2πi

∫ c+i∞

c−i∞
L(s, f )X s+δ Γ(s)

Γ(s + δ + 1)
ds,

we shift the line of integration to the left to Re s = 1− c , picking up

some main terms MT(X ), and leaving the integral

1

2πi

∫ 1−c+i∞

1−c−i∞
L(s, f )X s+δ Γ(s)

Γ(s + δ + 1)
ds.

Applying the functional equation L(s, f ) = L(1− s, g)G (1− s)/G (s) and

changing variables s 7→ 1− s, we transform this into

1

2πi

∫ c+i∞

c−i∞
L(s, g)

G (s)

G (1− s)
X s+δ Γ(1− s)

Γ(1− s + δ + 1)
ds.
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If c is large enough that the Dirichlet series L(s, g) converges absolutely,

we can swap the order of integration and summation in this integral

1

2πi

∫ c+i∞

c−i∞
L(s, g)

G (s)

G (1− s)
X s+δ Γ(1− s)

Γ(1− s + δ + 1)
ds.

to write this integral as ∑
n≥1

b(n)

µδ+1
n

I (µnX ),

where I (x) is a “smoothed indicator function”

I (x) =
1

2πi

∫ c+i∞

c−i∞

G (s)

G (1− s)
X s+δ Γ(1− s)

Γ(1− s + δ + 1)
ds.

CN show that I (x) is well-approximated by a J-Bessel function for large

x , and then optimize regions of applying various bounds to the sum to

bound the size of the remainder.
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Application I: Cusp forms

A holomorphic cuspform f (z) =
∑

n≥1 a(n)e2πinz comes with a Dirichlet

series L(s, f ) =
∑

n≥1 a(n)n−s satisfying a functional equation of the

shape

c(f )sL(s, f )Γ(s) = c(f )1−sL(1− s, f̃ )Γ(1− s),

and CN’s argument gives a bound analogous to the Sierpiński bound for

the Gauss circle problem,

Sf (N)� N
k−1
2 + 1

3 .

Remarkably, this is the state of the art for this result.2 There has been no

significant3 improvement since 1962. Morally this should be the same as

in the Gauss circle problem, and this result is due for an improvement!

2Actually, it’s possible to save some fractional log power.
3i.e. power savings
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Application II: Gauss circle problem

In fact, CN applies also to the Gauss circle problem. The Dirichlet series

ζ2(s) :=
∑
n≥1

r2(n)

ns

is an “Epstein zeta function” (essentially a sum of a positive definite

quadratic form over a lattice), and satisfies the functional equation

π−sΓ(s)ζ2(s) = π−(1−s)Γ(1− s)ζ2(1− s).

CN’s argument in this case matches the Sierpiński bound,

S(N)− Vol B(
√

N)� N
1
3 ,

(and many of the details are very similar, despite having different colors

upon first glance).
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Aside on CN

CN wrote a small series of papers based around this technique, with an

eye towards studying various estimates of single Dirichlet series. But one

can ask about estimates among families of Dirichlet series.

For example, one might want study the number of points in a variety of

lattices Λ ⊆ Rd inside a dimensional d-sphere of radius
√

N and compare

point counts among these.

In [LDTT17], Thorne, Taniguchi, and I rework the argument of

CN [CN62] to explicitly track the dependence on the lattice Λ, so that

the implicit constant depend only on the dimension d . For more general

functional equations, we can phrase this as explicitly tracking dependence

on all parameters and having implicit constants depend “only on the

shape of the functional equation”.

In fact, this can be done to many more of the arguments of CN, but we

only carried this out for one particular application so far. There is

additional work here to be done uniformizing the results of CN.
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I spent a long time trying to improve the result to holomorphic cusp

forms in various ways. Along with Tom Hulse, Chan Ieong Kuan, and

Alex Walker, we found some success studying the Dirichlet series∑
n≥1

Sf (n)

ns
,
∑
n≥1

S2(n)

ns
, and

∑
n≥1

Sd(n)

ns
.

Here, we let Sd(n) count the number of lattice points in Zd in the ball of

radius
√

n, the Gauss d-sphere problem.

To non-number theorists, it may be the case that all Dirichlet series look

the same. But these are quite weird. Up to now, every Dirichlet series in

this talk has secretly been either an L-function or a natural counting zeta

function, with beautiful functional equations and excellent properties.

But these series don’t have (nice) functional equations. Nonetheless,

each of these Dirichlet series has (mostly understandable) meromorphic

continuation to the plane and one can still try to apply complex analysis

and harmonic analysis to understand their behavior.
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At the heart of our analysis are shifted convolution sums in two complex

variables,

Z (s,w) :=
∑
n,h

a(n + h)a(n)

(n + h)snw
,

which we study using the spectral theory of automorphic forms.

I won’t go into the details here, but I’ve included a large paper trail in

which we study these series in the references.

But I will try to give a short impression suggesting that the series∑
n≥1

Sf (n)2

ns

is understandable.
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We can express the Dirichlet series of interest in terms of the Riemann

zeta function ζ(s), the shifted convolution sum Z (s,w), and the

L-function L(s, f ⊗ f )

Z (s,w) =
∑
n,h

a(n + h)a(n)

(n + h)snw
, L(s, f ⊗ f ) =

∑
n

a(n)2

ns
.

One can (essentially combinatorially) decompose the Dirichlet series into∑
n≥1

Sf (n)2

ns
=

L(s, f ⊗ f )

ζ(2s)
+

∫
(σ)

L(s − z , f ⊗ f )

ζ(2s − 2z)
ζ(z)B(z , s − z)dz

+ Z (s, 0) +

∫
(σ)

Z (s − z , 0)ζ(z)B(z , s − z)dz ,

where B(a, b) is the Beta function.

This decomposition follows from a Mellin-Barnes type integral identity,∑
n,m≥1

a(n)

(n + m)s
=
∑

n,m≥1

∫
(σ)

a(n)

ns−z
1

mz

Γ(z)Γ(s − z)

Γ(s)
dz

and a combinatorial game.
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From the decomposition∑
n≥1

Sf (n)2

ns
=

L(s, f ⊗ f )

ζ(2s)
+

∫
(σ)

L(s − z , f ⊗ f )

ζ(2s − 2z)
ζ(z)B(z , s − z)dz

+ Z (s, 0) +

∫
(σ)

Z (s − z , 0)ζ(z)B(z , s − z)dz ,

the moral is that the LHS is understandable as long as L(s, f ⊗ f ) and

Z (s,w) are understandable.

The L-function L(s, f ⊗ f ) is the Rankin-Selberg convolution of f with

itself, and is recognizable as an inner product of the modular form f 2

with an Eisenstein series. The shifted convolution is similarly

recognizeable as (the sum of several) inner prodcucts of f 2 with a certain

Poincaré series (with auxiliary sum variable w). It’s harder to understand,

but still comprehendable.
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Using these new Dirichlet series, my collaborators and I were able to

prove the following smoothed mean square result [HKLDW17b].

Theorem (HKLDW)∑
n≥1

|Sf (n)|2e−n/X = CX k−1+ 3
2 + O(X k−1+ 1

2+ε).

Actually, we prove something a bit mysterious. If g is another weight k

cusp form, we show

Theorem (HKLDW)∑
n≥1

Sf (n)Sg (n)e−n/X = C ′X k−1+ 3
2 + O(X k−1+ 1

2+ε).

This says something about correlation between the sums Sf (n) and Sg (n)

which is perhaps non-intuitive. Further, the exponents in the error terms

are essentially the best possible, since they correspond to lines of spectral

poles (roughly analogous to poles coming from 1/ζ(s)).
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With this understanding, we went after bounds for individual Sf (n). We

chose to do this through a particular short-interval approximation, and

in [HKLDW17a] we proved

Theorem (HKLDW II)

1

X
2
3 (log X )

1
6

∑
|n−X |≤X

2
3 (logX )

1
6

|Sf (n)|2 � X k−1+ 1
2 .

This is a sizable (i.e. polynomial) improvement over the previous

short-interval estimate, but it’s not strong enough to improve individual

estimates. With a lot of extra work, we could leverage this to again show

Sf (X )� X
k−1
2 + 1

3 ,

i.e. we can perfectly match the result that comes from CN-type methods.

Overall, I’ve been frustrated and unable to exploit the greater

understanding of these exponentially smoothed sums hasn’t yielded

greater understanding of individual bounds.
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Applied to the Gauss circle and d-sphere problems, the story is very

similar.

As with the Circle Problem, it is intuitively clear that

Sd(R) ≈ Vol Bd(
√

R), so the real goal is to understand

|Sd(R)− Vol Bd(
√

R)|. Through a Gauss-like argument, one can show

that

Sd(R)− Vol Bd(
√

R)� R
d−1
2 ,

bounding the error by the surface area.

Conjecture

Sd(R)− Vol Bd(
√

R)� Rα(d),where α(d) =

{
1
4 d = 2

d
2 − 1 d ≥ 3.

(Notice the phase shift between dimensions 2 and 3).
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In all cases, we have mean-square estimates that lead to the conjectured

sizes. For sufficiently high dimensions (i.e. d ≥ 5), the circle method is

enough to prove the conjecture. In 4 dimensions, there is an identity

r4(n) = 8σ(n)− 32σ(
n

4
),

where σ(n) is the sum of divisors of n. This is multiplicative and well

behaved, and one can essentially prove the conjecture in dimension 4

using this.

But dimension 2 (the Gauss circle problem) and 3 (the Gauss sphere

problem) are very mysterious. In particular, in dimension 3 the best mean

square result for decades was due to Jarnik [Jar40], indicating

1

X

∫ X

0

|S3(r)− Vol B3(
√

r)|2dr = CX log X + O(X (log X )
1
2 ).

(Dimension 3 is unique in that the leading term comes with an attached

log factor). This is a fractional power of log savings!
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The Gauss d-sphere problem is equivalent to studying

Sd(R) =
∑
n≤R

rd(n),

where rd(n) = #{z ∈ Zd : x · x = n} is the number of ways of writing n

as a sum of d squares.

The Jacobi theta function

θ(z) =
∑
n∈Z

e2πin2z

is a (weight 1/2, non-cuspidal) modular form, and in fact

θd(z) =
∑
n≥0

rd(n)e2πinz

is a modular form whose coefficients track rd(n).

While everything is harder because θ is half-integral weight and

non-cuspidal, the techniques still apply.
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By studying the (even more non-standard) Dirichlet series∑
|Sd(n)− Vol B(

√
n)|2n−s , we showed in [HKLDW18a] the following.

Theorem (HKLDW III)

There exists λ > 0 such that

1

X

∫ X

0

∣∣S3(t)− Vol B3(
√

t)
∣∣2dt = C ′X log X + CX + O(X 1−λ+ε).

(Alex Walker computed that we can take λ = 1
5 ).

Further, if we consider smoothed approximations, we can show that

Theorem (HKLDW III)

∑
n≥1

∣∣Sd(n)− Vol Bd(
√

n)
∣∣2e−n/X

= δ[d=3]C
′X 2 log X + CdX d−1

+ δ[d=4]C4X
5
2 + C ′′d X d−2 + O(X d− 5

2+ε).
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This is very nearly the Laplace transform. In terms of the Laplace

transform, we can phrase our result as∫ ∞
0

∣∣Sd(t)− Vol Bd(
√

t)
∣∣2e−t/Xdt = δ[d=3]C

′X 2 log X + CdX d−1

+ δ[d=4]C4X
5
2 + C ′′d X d−2 + O(X d− 5

2+ε)

(with slightly different, but explicit, constants). In fact, we can continue

outputting additional terms down to O(X
d−1
2 +ε), but then another line of

spectral poles prevents further understanding.

Unfortunately, I am again stumped. I had expected that improving results

for the Laplace transform, short-interval estimates, or sharp second

moments would translate into improved results for individual bounds —

but I haven’t been able to prove these. Instead, I’ve proved that there is

a wall of highly oscillatory terms coming from spectral poles that are

completely mysterious to me.
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Lattice points on hyperboloids
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The d-dimensional Gauss Sphere Problem concerns counting

#{x ∈ Zd : x2
1 + · · ·+ x2

d ≤ R} =
∑
m≤R

rd(m).

Suppose instead we want to count the number of lattice points on the

one-sheeted hyperboloid Hd,h for some positive integer h,

#{x ∈ Zd : x2
1 + · · ·+ x2

d−1 = x2
d + h}

that are contained within the (dimension d) ball B(
√

R) This is

equivalent to counting ∑
2m2+h≤R

rd−1(m2 + h),

which looks very similar to the Gauss d − 1 Sphere Problem sum, except

constrained along a surface.
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In many dimensions, the circle method should be able to determine a

main term with some logarithmic savings, with better savings occurring

for very high dimension.

The two dimensional case is now uninteresting, but the three-dimensional

case is again very enigmatic. When h is a square, it is easy to come up

with a heuristic. Consider

X 2 + Y 2 = Z 2 + h2.

Then setting X = Z ,Y = h gives
√

R trivial terms. It’s natural to ask:

Are these most of the solutions, or are we missing many more?

Oh and Shaw [OS11] recently showed that when h is a square, the total

number of solutions is

C
√

R log R + O(R
1
2 (log R)

3
4 ).

So we see that most solutions are nontrivial.
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We return now to the standard hyperboloid X 2 + Y 2 = Z 2 + h, when h is

not necessarily a square. The key idea to my approach is that these

solutions can also be retrieved from a modular form, namely

V (z) = θ2(z)θ(z).

In particular, the hth Fourier coefficient of V (z) is given by∑
m∈Z

r2(m2 + h)e−(2m
2+h)πy ,

which is an exponentially weighted version of the sum we want to

understand.

Using analogous techniques to study the shifted convolution sum briefly

touched on earlier, we can recover the Dirichlet series∑
m∈Z

r2(m2 + h)

(2m2 + h)s
.
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Further, it’s possible to attain the meromorphic continuation for the

Dirichlet series ∑
m∈Z

rd−1(m2 + h)

(2m2 + h)s
.

and it is possible to use this Dirichlet series to prove a variety of results.

Of particular interest is the following

Theorem (DLD)

The number of integer lattice points on the hyperboid H3,h and within

the ball of radius
√

R centered at the origin is

δ[h=a2]C
′R

1
2 log R + CR

1
2 + O(R

1
2−λ+ε)

for a positive λ > 0 (which might be 1/44).

As a corollary, note that when h is not a square, a positive proportion of

solutions are trivial solutions!
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Takeaways

An underlying theme o this talk is that the Gauss circle problem is

analogous to several problems concerning the Fourier coefficients of

modular forms. Often, techniques that work in one domain apply in some

form to the other, but not all of these domains are equally studied.

In particular, much of the work in the classical Gauss circle problem is

due to the circle method and harmonic analysis. But most of the results

I’ve described in this talk end with certain techniques and results from

the spectral theory of automorphic forms and complex analysis.

I suspect that with more harmonic analysis, it would be possible to

improve the various results in this talk. Perhaps we could even improve

the individual bound for Sf (X ) =
∑

n≤X a(n)!

Or maybe not — I’m not sure!
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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pages 883–892. de Gruyter, Berlin, 1999.

Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and

Alexander Walker.

The Laplace transform of the second moment in the Gauss

circle problem.

Submitted for Publication. Preprint available:

https://arxiv.org/abs/1705.04771.



References iii

Thomas Hulse, Chan Ieong Kuan, David Lowry-Duda, and Alexander

Walker.

Short-interval averages of sums of fourier coefficients of cusp

forms.

Journal of Number Theory, 173:394–415, 2017.

Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and

Alexander Walker.

The second moment of sums of coefficients of cusp forms.

Journal of Number Theory, 173:304–331, 2017.



References iv

Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and

Alexander Walker.

Sign changes of coefficients and sums of coefficients of

L-functions.
J. Number Theory, 177:112–135, 2017.

https://dx.doi.org//10.1016/j.jnt.2017.01.007.

Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and

Alexander Walker.

Second moments in the generalized Gauss circle problem.
Forum of Mathematics, Sigma, 2018.

Accepted, In Press; arXiv:1703.10347.



References v

Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and

Alexander Walker.

Second moments in the generalized Gauss circle problem.
Forum of Mathematics, Sigma, 6, 2018.

Preprint available: https://arxiv.org/abs/1703.10347.
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