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Triangles



What is a Congruent Number?

If a right triangle has rational sidelengths, we call it a rational triangle.

For example, the (3, 4, 5) triangle is rational, and scaling a rational

triangle by a rational number (such as by 1/2) gives another rational

triangle.
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3/2
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5/2

There are infinitely many rational triangles, but “most” triangles are not

rational – even if two sides are rational. For example, the (1, 1,
√

2)

triangle is not rational.

Every rational triangle has rational area. The two triangles above have

areas 6 and 3/2.
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We call a positive rational number n a congruent number if there is a

rational right triangle with area n. So we see that 6 and 3/2 are

congruent.

Guiding Question

Which rational numbers are congruent? That is, which numbers appear

as areas of rational triangles?

This is one of those questions that feel simple, but is challenging,

interesting, and closely related to deep mathematics.

Congruent Number Detection

Given a rational number n, can we decide if it is congruent?

For example, is 1 congruent?
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Theorem (Fermat 1640)

1 is not congruent.

Broad Idea of Fermat’s Proof

Suppose there is a rational right triangle of area 1. Call the common

denominator of the side lengths d , so that the sides can be written

(a/d , b/d , c/d), where a, b, c , and d are integers that satisfy

(a/d)2 + (b/d)2 = (c/d)2 and (1/2)(a/d)(b/d) = 1. Or equivalently,

a2 + b2 = c2, ab = 2d2.

Fermat used the method of infinite descent: given a solution (a, b, c , d),

he shows how to construct a new solution (A,B,C ,D) with 0 < C < c .

Repeating, he gets a contradiction: there aren’t infinite sets of decreasing

positive integers.
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Historical Interlude I

Infinite descent arguments are very old. Perhaps the oldest use is the

classical proof that
√

2 isn’t rational: if it was, then you could write

2 =
a2

b2
=⇒ 2b2 = a2.

But then a is even, so we can write a = 2A and rewrite this as

2b2 = (2A)2 =⇒ b2 = 2A2.

Now b is even! So we can write b = 2B, so that

4B2 = 2A2 =⇒ 2B2 = A2.

This is the same as the first equation. Repeating gives a sequence

a1, a2, a3, . . . of positive integers satisfying a1 > a2 > a3 > . . .. But that’s

impossible. And so
√

2 is irrational.

This proof (in geometric form) appeared in Euclid’s elements around 300

BCE. Fermat first developed the method of infinite descent for

Diophantine problems precisely to decide if 1 was congruent.
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Fermat used descent to show that 1, 2, and 3 are not congruent.1 Proofs

using descent for larger integers get much, much more challenging.

We can see that 4 isn’t congruent because 1 isn’t congruent: if 4 were

congruent, then we could scale the triangle by a factor of 1/2 and get a

rational triangle with area 1. Similarly 8 and 9 aren’t congruent.

Each of 5, 6, 7 are congruent, but finding triangles can be very hard.

3
2
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41
6

3
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5

35
12

24
5

337
60

1If you would like to see Fermat’s proof that 1 isn’t congruent, I would be happy to

chat after my talk.

6



Finding triangles can be very, very hard

Sometimes, finding triangles for a number can be very, very hard. The

“simplest” rational triangle with area 157 is

6803298487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

22
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30

We’re going to need to develop a better approach to determine if a

number is congruent. 7



Arithmetic Progressions of

Squares



Restricting to Integers

We can simplify our search with a few observations.

If n is congruent, then nt2 is congruent for any rational t. Why? Because

we can scale the triangle by t.

a

b
c

at

bt
ct

For example, 6 is congruent (from the (3, 4, 5) triangle), and so

24 = 6 · 22 is congruent (from the (6, 8, 10) triangle).

Similarly, 3/2 = 6 · (1/2)2 is congruent (from the (3/2, 2, 5/2) triangle).
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We can use this to restrict our attention to only the integers without

losing any generality. Instead of looking for a rational triangle with area
1
12 , we can look for a rational triangle with area 1

12 · 4 · 9 = 3 (which

Fermat showed doesn’t exist).

Every rational number can be multiplied by an appropriate rational

square to become an integer. Further, we can choose the integer to be

squarefree (meaning that it’s not divisible by any square other than 1).

This gives another definition for congruent numbers. We say an integer n

is congruent if there is an integer right triangle whose area has squarefree

part n.

(The squarefree part of an integer is the part that remains after dividing

out by the squares. The squarefree part of 24 = 22 · 6 is 6).

Now we only need to look at integer-sided right triangles.
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Recall that an arithmetic progression (AP) is a sequence of the form

a, a + d , a + 2d , a + 3d , . . .

where each term differs from the next term by the same amount.

There is a relationship between three term arithmetic progressions (3AP)

of squares and the difference being a congruent number.

The three squares 1, 25, 49 form a 3AP of squares with common

difference 24, which corresponds to the fact that 24 (and in particular its

squarefree part, 6) is congruent.

10



3APs and Congruent Numbers

Theorem

There is a one-to-one correspondence between right triangles with area

n and 3APs of squares with common difference n.

This correspondence can is given explicitly between the sets

RightTriangles(n) : {(a, b, c) : a2 + b2 = c2, (1/2)ab = n}
3APSquares(n) : {[r , s, t] : s2 − r2 = t2 − s2 = n}

through

(a, b, c) 7→
[b − a

2
,
c

2
,
b + a

2

]
, [r , s, t] 7→ (t − r , t + r , 2s).

For example, the triangle (6, 8, 10) corresponds to the 3AP represented

by
[
8−6
2 , 102 ,

8+6
2

]
= [1, 5, 7], which is 1, 25, 49.
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How might we discover this?

This correspondence is perhaps easier to see starting with 3APs. If

s2 − r2 = n and t2 − s2 = n, then adding these together gives

t2 − r2 = 2n =⇒ (t − r)(t + r) = 2n.

This (loosely) suggests setting a = (t − r) and b = (t + r), so that

(1/2)ab = n and

a2 + b2 = 2(t2 + r2) = 2(2s2) = (2s)2,

so set c = 2s.

It seems this was actually discovered several times in antiquity, thousands

of years ago — likely through several people playing around with number

patterns.
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Historical Interlude II

Both studying congruent numbers and 3APs of squares were fasionable in

and around the year 1000 CE. There are Arabic manuscripts from the

10th century collecting congruent numbers.

Fibonacci was proud to discover that 7 is congruent and he stated

(without proof) that 1 is not congruent.

The term “congruent number” comes from Fibonacci. In his 1225 book

Liber Quadratorum (Book of Squares), Fibonacci called an integer n

congruum if there was an integer x such that x2 − n, x2, x2 + n are all

squares.

Congruum and congruent both come from the Latin congruere, which

means “to meet”, similar to the modern to congregate. Congruum slowly

morphed to congruent, though this is not the same as congruent triangles

or modular arithmetic congruences.
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Looking for 3APs

This correspondence relates 3APs of squares to congruent numbers.

As a corollary to this correspondence (and our ability to scale triangles),

the fact that 1, 2, and 3 are not congruent implies that there are no

3APs of squares whose common difference is a square, twice a square, or

three times a square.

This correspondence also suggests that we might try to find 3APs of

squares as a way of finding congruent numbers.
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Let τ(n) denote the square indicator function,

τ(n) =

{
1 if n = a2 for some integer a

0 else.

Note that m − n,m,m + n is a 3AP of squares if and only if

τ(m − n)τ(m)τ(m + n) = 1.

Further, m − n,m,m + n is a 3AP of squares whose common difference

has squarefree part t if and only if

τ(m − n)τ(m)τ(m + n)τ(tn) = 1.

For example, the 1, 25, 49 3AP of squares has common difference 24

(with squarefree part 6), and

τ(25− 24)τ(25)τ(25 + 24)τ(6 · 24) =

τ(1)τ(52)τ(72)τ(2432) = 1.
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A Naive Idea to Determine if t is Congruent

We can use this observation to build a naive idea to determine if t is

congruent. The sum

∞∑
m=1

∞∑
n=1

τ(m − n)τ(m)τ(m + n)τ(tn)

will either consist entirely of 0s (if t is not congruent) or will contain

infinitely many 1s and diverge (if t is congruent).

On the one hand, this is essentially the same as iterating through all

triangles and hoping to find a triangle with squarefree area t.

But on the other hand, this is just the beginning of a new idea. We can’t

add up infinitely many numbers, but if we knew how many terms we

might need to check before finding a nonzero term, we would have a

finite algorithm for determining if a given number was congruent.
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Our goal will be to study the size of the (finite) sums

St(X ) :=
X∑

m=1

X∑
n=1

τ(m − n)τ(m)τ(m + n)τ(tn).

The underlying idea for this goal is similar to the major ideas from

analytic number theory to count the number of primes up to a certain

size.

For primes, the idea was to study the prime indicator function

IsPrime(n) =

{
1 if n is prime

0 else.

The birth of the field of analytic number theory came with the proof of

the Prime Number Theorem, stating that

π(X ) :=
X∑

n=1

IsPrime(n) ≈ X

logX
.
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To study these sums, we will first rearrange them into a slightly different

form. First we note that we can rewrite

St(X ) =
X∑

m=1

X∑
n=1

τ(m − n)τ(m)τ(m + n)τ(tn)

as
X∑

m=1

X/t∑
n=1

τ(m − tn)τ(m)τ(m + tn)τ(nt2)

by changing variables n 7→ nt. (Changing variables in sums can be very

confusing, but it’s very similar to changing variables in integration). With

m ≤ X , we see that τ(m − tn) = 0 for n ≥ X/t — so we can write the

upper bound for the n sum as X . And τ(nt2) = τ(n), since multiplying n

by a square doesn’t change whether n is a square. Together we can

rewrite this as

St(X ) =
X∑

m=1

X∑
n=1

τ(m − tn)τ(m)τ(m + tn)τ(n).
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Note the τ(m) and τ(n) in

St(X ) =
X∑

m=1

X∑
n=1

τ(m − tn)τ(m)τ(m + tn)τ(n).

This means that only terms where m and n are squares are nonzero in

the sum, so we can rewrite this as

St(X ) =

√
X∑

m=1

√
X∑

n=1

τ(m2 − tn2)τ(m2 + tn2).

(This is the end of the technical combinatorial portion of the talk).

This last equality is interesting, as it suggests a different relationship.
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Another Correspondence

The original summands had the form τ(m− n)τ(m)τ(m + n)τ(tn), which

came from the correspondence between rational right triangles and 3APs

of squares.

The main terms in the last sum have the form τ(m2 − tn2)τ(m2 + tn2).

And these reveal another, slightly different correspondence.

Theorem ([HKLDW19])

There is a one-to-one correspondence between

{Right triangles (a, b, c)

with a < b < c, squarefree area t, and gcd(a, b, c) = 1}
and

{coprime pairs of integers [m, n]

such that both m2 − tn2 and m2 + tn2 are squares}.

In one direction, the correspondence can be written

(a, b, c) 7→ [c ,
√

2ab/t].
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This correspondence associates the right triangle (a, b, c) to the 3AP of

squares m2 − tn2,m2,m2 + tn2 where [m, n] = [c ,
√

2ab/t].

To see an example, we look to the (3, 4, 5) triangle, which has squarefree

area t = 6. This correspondence says that

[m, n] = [5,
√

2 · 3 · 4/6] = [5, 2] should give a 3AP of squares. We check

that m2 − tn2 = 25− 6 · 4 = 1 and m2 + tn2 = 25 + 6 · 4 = 49 are

squares, and they are!

This correspondence reveals an interesting relationship: the hypotenuse

of the triangle is the root of the middle square in the 3AP. The (3, 4, 5)

triangle has hypotenuse 5, and the middle square of the associated 3AP

is 25.

We can use this to better understand St(X ).

In particular, the main advantage of this correspondence over the

previous correspondence is the direct relation on the middle square (m2)

in the 3AP and the common difference (tn2) in the 3AP.
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The summand for any individual pair (m, n) will either be 0 or 1 in

St(X ) =

√
X∑

m=1

√
X∑

n=1

τ(m2 − tn2)τ(m2 + tn2).

The previous correspondence shows that a coprime pair (m, n) will

contribute a 1 if and only if m is the hypotenuse of a primitive right

triangle with squarefree part of the area equal to t. If (m, n) contributes,

then (rm, rn) will also contribute for every integer multiple r .

Let H(t) denote the set of hypotenuses of primitive right triangles with

squarefree part of the area t. Then

St(X ) =
∑

hi≤
√
X

hi∈H(t)

√
X/hi∑
r=1

1 =
∑

hi≤
√
X

hi∈H(t)

⌊√X
hi

⌋
.

So we should expect to need to search through about as many terms as

the size of the smallest hypotenuse before we find the first triangle. . . but

how large is the smallest hypotenuse?
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Elliptic Curves



A Geometric Approach

Fix an area n and consider the two equations

a2 + b2 = c2,
1

2
ab = n.

Each equation describes a surface in R3 (thinking of a, b, c as the

coordinates in R3). Simultaneous solutions will lie on the intersection of

the two surfaces, which we should heuristically expect to be a curve.

We can show that the curve will have the equation Y 2 = X 3 − n2X (with

the right choice of coordinates).
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Finding the Curve

To find this curve, it’s better to write c = t + a. Then the equation

a2 + b2 = c2 can be written as

2at = b2 − t2.

From 1
2ab = n, we see that neither a nor b is 0, and we can write

a = 2n/b. Substituting above gives

4nt

b
= b2 − t2.

Multipliying through by bn3/t3 transforms this into(2n2

t

)2
=
(nb

t

)3
− n2

(nb
t

)
.

With Y = 2n2/t and X = nb/t, this is the curve Y 2 = X 3 − n2X .
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An Elliptic Curve

The curve Y 2 = X 3 − n2X is an example of something called an elliptic

curve. The curve corresponding to n = 6 looks like

Elliptic curves are special plane curves that have many special properties

that make them very well behaved.
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Another Correspondence

Further, the coordinates Y = 2n2/t and X = nb/t (with c = t + a) we

identified above are yet another one-to-one correspondence in disguise,

this time between right triangles and points on these curves.

Theorem

There is a one-to-one correspondence between the sets

RightTriangles(n) : {(a, b, c) : a2 + b2 = c2, (1/2)ab = n}
PtsOnCurve(n) : {[X ,Y ] : Y 2 = X 3 − n2X ,Y 6= 0}

The correspondence is given in one direction by

(a, b, c) 7→
[ nb

c − a
,

2n2

c − a

]
.

In this correspondence, integer right triangles correspond to rational

points on the elliptic curve with nonzero Y coordinate.
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Under this correspondence, the (3, 4, 5) right triangle corresponds to the

point (12, 36) on the curve Y 2 = X 3 − 36X .
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We have shown that the following properties of a positive integer n are

equivalent.

• There is a rational right triangle with area n.

• There is an integer right triangle with squarefree part of the area

equal to n.

• There is a 3AP of rational squares with common difference n.

• There is a rational solution to Y 2 = X 3 − n2X with Y 6= 0.

We’ve used the first 3 equivalences to develop a partial understanding of

the sum St(X ) for understanding whether t is a congruent number.

What can we expect to gain from elliptic curves? (Answer: potentially

quite a bit!)
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Using the Curve

One of the remarkable properties of elliptic curves is that we can define a

form of “addition” on their rational points.

That is, we can define an operation ⊕ such that if P and Q are two

rational points on an elliptic curve, then P ⊕ Q is another rational point

on the curve. In fact, with this operation, the rational points on an

elliptic curve form an Abelian group.

In particular, we can define P ⊕ Q as follows: the line through P and Q

will intersect the curve in one additional place with coordinates (x , y).

Define P ⊕ Q = (x ,−y) — But really it’s simpler if we draw a picture.

It is possible to study how the geometry of the curve interacts with the

additive structure of the curve.
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One of the most fundamental questions we can ask about an elliptic

curve is How many rational points are on the curve? Or equivalently, we

can ask What does the additive structure of the curve look like?

It turns out that the elliptic curves Y 2 = X 3 − n2X always have exactly 4

“trivial” points — i.e. points where y = 0 (or infinity). Sometimes

(exactly when n is congruent) these curves have more points, in which

case there are infinitely many points.

In particular, the additive structure of the curve will look like

Zr × (finite).

We should think of this as saying that there are r points that sort of span

the space, except for some small finite deviations coming from the trivial

points. We call r the rank of the curve, and we should heuristic that high

rank =⇒ lots of points.

(For those familiar with some group theory, the structure is exactly given

by Zr × (Z/2Z)× (Z/2Z).)
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Using the Curve to Find More Triangles

Since rational points on these curves correspond to right triangles, and

since we can add these points together, it is possible to find more rational

points (and therefore more triangles). For example, if we compute

(12, 36)⊕ (12, 36) on the curve Y 2 = X 3 − 36X , we get the point

(25/4,−35/8), which corresponds to the triangle (49, 1200, 1201). And

we can check that the squarefree part of the area of this triangle is 6.

If we compute (12, 36)⊕ (12, 36)⊕ (12, 36), we get the triangle

(2896804, 7216803, 7776485), which is significantly more complicated.

Aside: If this is something that interests you, I can show you how one

can use a computer to compute this addition for you. On my website

there is a description of how to compute this exact example in Sage.
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Hypotenuses up to a Given Size

At first, we might be surprised that (12, 36)⊕ (12, 36)⊕ (12, 26) seems

so complex. But this is no accident. There is a general philosophy that

repeatedly adding together points on elliptic curves very rapidly increases

complexity. This is a major idea of the 1965 Annals paper of

Néron [Nér65] (but we don’t describe this fully here).

For us, the important idea is that we can use this to bound the number

of hypotenuses of primitive right triangles.

Theorem ([HKLDW19])

The number of hypotenuses of primitive right triangles with squarefree

part of the area equal to t and up to length X is bounded by

#{hi ∈ H(t) : hi ≤ X} < ct(logX )r/2,

where r is the rank of the elliptic curve y2 = x3 − t2x.
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Using this bound, one can better understand our estimate St(X ). Recall

that we showed that

St(X ) =
X∑

m=1

X∑
n=1

τ(m − n)τ(m)τ(m + n)τ(tn) =
∑

hi≤
√
X

⌊√X
hi

⌋
.

Using that |x − bxc| ≤ 1, we see that∣∣∣St(X )−
∑

hi≤
√
X

√
X

hi

∣∣∣ ≤ ∑
hi≤
√
X

1,

and the sum on the right is at most a constant times (logX )r/2 since

there are only that many hypotenuses up to size
√
X . Further, the sum∑

hi∈H(t)

1

hi

converges very rapidly to a constant Ct for the same reason — the size of

the hypotenuses grows very quickly.
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Main Result

Putting these together, we see the primary theorem of [HKLDW19]:

Theorem

Let St(X ) denote

St(X ) =
∑
m≤X

∑
n≤X

τ(m − n)τ(m)τ(m + m)τ(tn).

Then

St(X ) = Ct

√
X + Error(X ),

where

Error(X )� (logX )r/2,

Ct =
∑

hi
(hi )
−1 is the sum of the reciprocals of the hypotenuses of

primitive right triangles with squarefree part of area equal to t, and r is

the rank of the elliptic curve y2 = x3 − t2x.
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Million Dollar Question

This doesn’t resolve the congruent number problem or the search for

congruent numbers, but it does show that there are many interesting and

(surprisingly) interrelated ideas in arithmetic, algebra, geometry, number

theory, and analysis.

The observant among the audience might have noted that instead of

searching for triangles, we could search for rational points on the elliptic

curve Y 2 = X 3 − n2X . But it turns out this is very hard!

Simply deciding if an elliptic curve has many rational points seems hard.

There is a conjecture that gives a (somewhat complicated but still

feasible) method to decide the rank of an elliptic curve. This is called the

Birch–Swinnerton-Dyer Conjecture, and any who solve it will be offered a

million dollars from the Clay Math Institute.

(But in fact working through elliptic curves does seem to be the best way

to determine if a number is congruent or not).
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Thank you very much.

Please note that these slides (and references

for the cited works) are available on my

website (davidlowryduda.com).
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