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One-Sheeted Hyperboloids

A one-sheeted hyperboloid Hd(h) is described by the equation

X 2
1 + · · ·+ X 2

d−1 = X 2
d + h,

where h > 0. Of particular interest is the 3-dimensional hyperboloid

H3(h), which is given by

X 2 + Y 2 = Z 2 + h.

One might ask how many lattice points are on these hyperboloids?

(Answer: infinitely many).

How many lattice points are on these hyperboloids, and are not too

large? This is our guiding question.

Counting points on one-sheeted hyperboloids

Let h ∈ Z+. How many lattice points are on the surface of the

hyperboloid Hd(h) and contained within the ball B(
√
R) of radius

√
R?
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This question is similar in flavor to the Generalized Gauss Circle Problem

of counting the number of lattice points within the d-dimensional ball

B(
√
R), except that in our problem we impose an additional constraint.

As in the Generalized Gauss Circle Problem, the Hardy-Littlewood circle

method can be applied for sufficiently large dimension. But smaller

dimensions are more challenging. And the 3-dimensional case is by far

the most enigmatic.

Oh and Shah [OS11] recently showed using ergodic techniques to show

that the number of lattice points on

X 2 + Y 2 = Z 2 + h2

and within B(
√
R) is

C
√
R logR + O(R

1
2 (logR)

3
4 )

for an explicit constant C depending on h. Producing a better

asymptotic and understanding the case when h is not a square has proved

challenging.
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A New Approach

Note that if X 2 + Y 2 = Z 2 + h, then the condition of being contained in

B(
√
R) is the same as

(X 2 + Y 2) + Z 2 ≤ R ⇐⇒ 2Z 2 + h ≤ R.

By considering each possible value of Z 2 + h separately, we see that the

number of points on H3 and within B(
√
R) is given by∑

2n2+h≤R

r2(n2 + h) ≈ 1

2

∑
2n+h≤R

r2(n + h)r1(n),

where rk(n) is the number of ways of representing n as a sum of k

squares.

These sums appear as Perron-type integrals of the Dirichlet series∑
n≥0

r2(n2 + h)

(n2 + h)s
≈ 1

2

∑
n≥0

r2(n + h)r1(n)

(n + h)s
.

If we can understand this Dirichlet series, we can produce asymptotics.
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Modular Forms

The key insight is that this Dirichlet series can also be retrieved from a

modular form. Let

θ(z) =
∑
n∈Z

e2πin2z = 1 +
∑
n≥1

r1(n)e2πinz

be the standard Jacobi theta function, a modular form of weight 1/2 on

Γ0(4). (Note also that θd(z) = 1 +
∑

n≥1 rd(n)e2πinz).

The relevant modular form for H3 is V (z) = θ2(z)θ(z). (And for Hd , it’s

θd−1(z)θ(z)).

In particular, the hth Fourier coefficient of V (z) is given by∑
n∈Z

r2(n2 + h)e−(2n2+h)πy ,

which is an exponentially weighted version of the sum we want to

understand.
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Methodology

Let Pk
h (z , s) be a weight k Poincaré series,

Pk
h (z , s) =

∑
γ∈Γ∞\Γ0(4)

Im(γz)se2πihγzJ(γ, z)−k

where J(γ, z) = j(γ, z)/|j(γ, z)| and j(γ, z) is our multiplier.

If h = 0, then this gives the weight k real-analytic Eisenstein series

E k
∞(z , s) =

∑
γ∈Γ∞\Γ0(4)

Im(γz)sJ(γ, z)k .

Both Pk
h and E k

∞ transform like weight k modular forms (in z), and are

meromorphic functions in s.
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On Multipliers for Full-Integral vs Half-Integral k

When k is an integer and γ =
(
a b
c d

)
∈ Γ0(4), we take j(γ, z) = (cz + d).

When k is a half-integer, we must be a bit more careful to ensure a

well-defined multipler system, and we take

j(γ, z) = ε−1
d

( c
d

)
(cz + d)1/2,

where εd is 1 if d ≡ 1 mod 4 and is i if d ≡ 3 mod 4 and
(
c
d

)
is a Jacobi

symbol.

Half-integral weight modular forms lead to a few more complications than

full-integral weight forms, but I omit most of these details from this talk.
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Recognize the Dirichlet Series

The Petersson inner product of P
1
2

h (z , s) against V gives

〈P
1
2

h (z , s),V (z)〉 =

∫∫
Γ0(4)\H

P
1
2

h (z , s)θ2(z)θ(z)y
3
4
dxdy

y2

=
Γ(s − 1

4 )

(2π)s−
1
4

∑
m∈Z

r2(m2 + h)

(m2 + h)s−
1
4

,

which is our Dirichlet series (and an easily understood analytic factor).

We have reduced the task to understanding the inner product on the left.

I note that this follows a general plan for constructing shifted convolution

sums. If f and g are two modular forms with coefficients a(n) and b(n)

respectively, then roughly speaking

〈Ph(z , s), f (z)g(z)〉 ≈ Γ(s)

(2π)s

∑ a(m + h)b(m)

(m + h)s
.
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Spectrally Expand the Poincaré Series

The Poincaré series has a spectral expansion of the form

Pk
h (z , s) =

∑
j

〈Pk
h , µj〉µj(z) +

∑
1
2≤`≤k

∑
j

〈Pk
h , µj,`〉µj,`(z)

+
∑
a

〈Pk
h ,R

k
a 〉Rk

a

+
∑
a

∫
(1/2)

〈Pk
h ,E

k
a (·, u)〉E k

a (z , u)du.

The first line is the discrete spectrum, µj(z) denotes Maass forms of

weight k (and µj,`(z) denotes Maass forms that come from products of

lower weight Maass forms and holomorphic cusp forms). The second line

is the residual spectrum, and only appears when k is a half-integer. The

third line is the continuous spectrum, and each E k
a is a weight k

Eisenstein series associated to the cusp a.
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Substitute into the Inner Product

The plan is to substitute the spectral expansion into the inner product

〈P
1
2

h ,V 〉 and understand the behavior as a meromorphic function of s. In

the analogous case when k is a full integer and when V is f or f g (where

f and g are cusp forms), this is fairly straightforward, and can be used

towards many different goals.

But in this case, there are two major obstructions:

1. V is is non-cuspidal. This means that it’s not possible to naively

substitute the spectral expansion and consider each part of the sum

separately, since convergence is not guaranteed.

2. V = θ2θ comes from half-integral weight objects, which generically

behave worse than full-integral weight objects.

9



But one can get around these obstructions.

Instead of V , one can consider Ṽ = V − V0 − V∞ − V1/2, where the

three functions V0,V∞, and V1/2 cancel the growth of V at the three

cusps of Γ0(4).

For V = θ2k+1(z)θ(z) (which corresponds to dimension 2k + 2), it turns

out that Ṽ = V − E k
∞(z , k+1

2 )− E k
0 (z , k+1

2 ) suffices. . . except in

dimension 3 (when k = 1/2), where this happens to lie on a pole of the

half-integral weight Eisenstein series. But then it suffices to only subtract

just the constant term of the Laurent expansions of the Eisenstein series,

expanded at that pole.

Then one replaces each V in the proof outline with Ṽ , which smoothes

away many of the difficulties.
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The other major obstruction comes from half-integral weight objects,

especially in the spectral expansion. To some extent, these are serious

difficulties. But in a few places, I used one particular trick.

The theta function θ(z) is a residue of the half-integral weight

real-analytic Eisenstein series,

Resw=3/4E
1/2
∞ (z ,w) = cy1/4θ(z).

Thus for example in the discrete spectrum, we can think of

〈µj , θ
2(z)θ(z)y3/4〉 ≈ Res〈µj , θ

2(z)E
1/2
∞ (z ,w)y1/2〉,

and the object on the right is essentially another name for the

Rankin-Selberg L-function
∑

r2(n)ρj(n)/ns (where ρj(n) are the

coefficients of µj).

Additional details can be seen in Chapter 5 of my thesis [LD17].
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The end result is that we get a complete meromorphic continuation to C
of the series ∑

m∈Z

rd−1(m2 + h)

(m2 + h)s
.

and it is possible to use this Dirichlet series to prove a variety of results.

Theorem

The number of integer lattice points on the hyperboid H3 and within

the ball of radius
√
R centered at the origin is∑

2n2+h≤R

r2(n2 + h) = δ[h=a2]C
′R

1
2 logR + CR

1
2 + O(R

1
2−

1
44 +ε).

More generally, for Hd(h) and d ≥ 4, we have∑
2n2+h≤R

rd(n2 + h) = CR
d−2

2 + O(R
d−2

2 −λ+ε)

for a computable λ = λ(d) > 0.
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Thank you very much.
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