
COMPUTING π WITH FIRST YEAR CALCULUS

DAVID LOWRY-DUDA

1. Computing π

This note was originally written in the context of my fall Math 100 class
at Brown University.

While investigating Taylor series, we proved that
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Let’s remind ourselves how. Begin with the geometric series
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(We showed that this has interval of convergence |x| < 1). Integrating this
geometric series yields∫ x
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Note that this has interval of convergence −1 < x ≤ 1.
We also recognize this integral as∫ x
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one of the common integrals arising from trigonometric substitution. Putting
these together, we find that
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As x = 1 is within the interval of convergence, we can substitute x = 1 into
the series to find the representation
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Since arctan(1) = π
4 , this gives the representation for π/4 given in (1).

However, since x = 1 was at the very edge of the interval of convergence,
this series converges very, very slowly. For instance, using the first 50 terms
gives the approximation

π ≈ 3.121594652591011.
1
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The expansion of π is actually

π = 3.141592653589793238462 . . .

So the first 50 terms of (1) gives two digits of accuracy. That’s not very
good.

I think it is very natural to ask: can we do better? This series converges
slowly — can we find one that converges more quickly?

Aside. As an aside: one might also ask if we can somehow speed up the
convergence of the series we already have. It turns out that in many cases,
you can! For example, we know in alternating series that the sum of the
whole series is between any two consecutive partial sums. So what if you
took the average of two consecutive partial sums? [Equivalently, what if you
added only one half of the last term in a partial sum. Do you see why these
are the same?]

The average of the partial sum of the first 49 terms and the partial sum
of the first 50 terms is actually

3.141796672793031,

which is correct to within 0.001. That’s an improvement!
What if you do still more? More on this can be found in Section 4.

2. Estimating π through a different series

We return to the question: can we find a series that gives us π, but which
converges faster? Yes we can! And we don’t have to look too far — we can
continue to rely on our expansion for arctan(x).

We had been using that arctan(1) = π
4 . But we also know that arctan(1/

√
3) =

π
6 . Since 1/

√
3 is closer to the center of the power series than 1, we should

expect that the convergence is much better.
Recall that
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Then we have that
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Therefore, we have the equality

π

6
=

1√
3

∞∑
n=0

(−1)n
1

(2n+ 1)3n



COMPUTING π WITH FIRST YEAR CALCULUS 3

or rather that

π = 2
√
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.

From a computation perspective, this is far superior. For instance, based on
our understanding of error from the alternating series test, using the first
10 terms of this series will approximate π to within

2
√

3
1

23 · 311
≈ 1

26680
.

Let’s check this.

2
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3 · 3
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21 · 310

)
= 3.1415933045030813.

Look at how close that approximation is, and we only used the first 10 terms!
Roughly speaking, each additional 2.5 terms yields another digit of π. Using
the first 100 terms would give the first 48 digits of π. Using the first million
terms would give the first 47000 (or so) digits of π — and this is definitely
doable, even on a personal laptop. (On my laptop, it takes approximately
4 milliseconds to compute the first 20 digits of π using this technique).

Even Better Series. I think it is very natural to ask again: can we find
an even faster converging series? Perhaps we can choose better values to
evaluate arctan at? This turns out to be a very useful line of thought, and it
leads to some of the best-known methods for evaluating π. Through clever
choices of values and identities involving arctangents, one can construct
extremely quickly converging series for π. For more information on this line
of thought, look up Machin-like formula.

3. Patterns in the Approximation of π/4

Looking back at the approximation of π coming from the first 50 terms
of the series

1− 1

3
+

1

5
− 1

7
+ · · · (2)

we found an approximation of π, which I’ll represent as π̂,

π ≈ π̂ = 3.121594652591011.

Let’s look very carefully at how this compares to π, up to the first 10 deci-
mals. We color the incorrect digits in orange.

π = 3.1415926535 . . .

π̂ = 3.1215946525

Notice that most of the digits are correct — in fact, only three (of the first
ten) are incorrect! Isn’t that weird?

It happens to be that when one uses the first 10N/2 terms (for any N) of
the series (2), there will be a pattern of mostly correct digits with disjoint
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strings of incorrect digits in the middle. This is an unusual and surprising
phenomenon.

The positions of the incorrect digits can be predicted. Although I won’t
go into any detail here, the positions of the errors are closely related to
something called Euler Numbers or, more deeply, to Boole Summation.

Playing with infinite series leads to all sorts of interesting patterns. There
is a great history of mathematicians and physicists messing around with
series and stumbling across really deep ideas.

4. Speeding up computation

Take an alternating series
∞∑
n=0

(−1)nan = a0 − a1 + a2 − a3 + · · ·

If {an} is a sequence of positive, decreasing terms with limit 0, then the al-
ternating series converges to some value S. And further, consecutive partial
sums bound the value of S, in that

2K−1∑
n=0

(−1)nan ≤ S ≤
2K∑
n=1

(−1)nan.

For example,

1− 1

3
<
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2n+ 1
< 1− 1

3
+

1

5
.

Instead of approximating the value of the whole sum S by the Kth partial
sum

∑
n≤K(−1)nan, it might seem reasonable to approximate S by the

average of the (K − 1)st partial sum and the Kth partial sum. Since we
know S is between the two, taking their average might be closer to the real
result.

As mentioned above, the average of the partial sum consisting of the first
49 terms of (1) and the first 50 terms of (1) gives a much improved estimate
of π than using either the first 49 or first 50 terms on their own. (And
indeed, it works much better than even the first 500 terms on their own).

Before we go on, let’s introduce a little notation. Let SK denote the
partial sum of the terms up to K, i.e.

SK =
K∑
n=0

(−1)nan.

Then the idea is that instead of using SK to approximate the wholse sum
S, we’ll use the average

SK−1 + SK
2

≈ S.

Averaging once seems like a great idea. What if we average again? That
is, what if instead of using the average of SK−1 and SK , we actually use
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the average of (the average of SK−2 and SK−1) and (the average of SK1 and
SK),

SK−2+SK−1

2 +
SK−1+SK

2

2
. (3)

As this is really annoying to write, let’s come up with some new notation.
Write the average between a quantity X and Y as

[X,Y ] =
X + Y

2
.

Further, define the average of [X,Y ] and [Y, Z] to be [X,Y, Z],

[X,Y, Z] =
[X,Y ] + [Y,Z]

2
=

X+Y
2 + Y+Z

2

2
.

So the long expression in (3) can be written as [SK−2, SK−1, SK ].
With this notation in mind, let’s compute some numerics. Below, we give

the actual value of pi, the values of S48, S49, and S50, pairwise averages, and
the average-of-the-average, in the case of 1− 1

3 + 1
5 + · · · .

Value Difference from π
π 3.141592653589793238462 . . . 0

4 · S48 3.1207615795929895 0.020831073996803617
4 · S49 3.161998692995051 −0.020406039405258092
4 · S50 3.121594652591011 0.01999800099878213

4 · [S48, S49] 3.1413801362940204 0.0002125172957727628
4 · [S49, S50] 3.1417966727930313 −0.00020401920323820377

4 · [S48, S49, S50] 3.141588404543526 0.00000424904626727951

So using the average of averages from the three sums S48, S49, and S50 gives
π to within 4.2 · 10−6, an incredible improvement compared to S50 on its
own.

There is something really odd going on here. We are not computing
additional summands in the overall sum (1). We are merely combining some
of our partial results together in a really simple way, repeatedly. Somehow,
the sequence of partial sums contains more information about the limit S
than individual terms, and we are able to extract some of this information.

I think there is a very natural question. What if we didn’t stop now?
What if we took averages-of-averages-of-averages, and averages-of-averages-
of-averages-of-averages, and so on? Indeed, we might define the average

[X,Y, Z,W ] =
[X,Y, Z] + [Y, Z,W ]

2
,

and so on for larger numbers of terms. In this case, it happens to be that

[S15, S16, . . . , S50] = 3.141592653589794, (4)

which has the first 15 digits of π correct!
By repeatedly averaging alternating sums of just the first 50 reciprocals

of odd integers, we can find π up to 15 digits. I think that’s incredible
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— it seems both harder than it might have been (as this involves lots of
averaging) and much easier than it might have been (as the only arithmetic
input are the fractions 1/(2n+ 1) for n up to 50.

Although we leave the thread of ideas here, there are plenty of questions
that I think are now asking themselves. I encourage you to ask them, and
we may return to this (or related) topics in the future. I’ll see you in class.
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