
FACTORIZATION TECHNIQUES

ELVIS NUNEZ AND CHRIS SHAW

Abstract. The security of the RSA public key cryptosystem relies
upon the computational difficulty of deriving the factors of a partic-
ular semiprime modulus. In this paper we briefly review the history of
factorization methods and develop a stable of techniques that will al-
low an understanding of Dixon’s Algorithm, the procedural basis upon
which modern factorization methods such as the Quadratic Sieve and
General Number Field Sieve algorithms rest.

1. Introduction

During this course we have proven unique factorization in Z.

Theorem 1.1. Given n, there exists a unique prime factorization up to
order and multiplication by units.

However, we have not deeply investigated methods for determining what
these factors are for any given integer. We will begin with the most näıve
implementation of a factorization method, and refine our toolkit from there.

2. Trial Division

Theorem 2.1. There exists a divisor of n, a such that 1 > a ≤
√
n.

Definition 2.2. π(n) denotes the number of primes less than or equal to n.

Proof. Suppose b|n and b ≥
√

(n) and ab = n. It follows a = n
b . Suppose

b =
√
n, then a = n√

n
=
√
n. Suppose b >

√
n, then a <

√
n. �

By theorem 2.1, we can find a factor of n by dividing n by the numbers
in the range (1,

√
n]. By theorem 1.1, we know that we can express n as a

product of primes, and by theorem 2.1 we know there is a factor of n less
than

√
n. Therefore, we need not check every integer in the range (1,

√
n],

but need only check prime numbers in this range.

Example 2.3. Suppose we want to factor 679. We begin by first calculating√
679 ≈ 27. We will try to divide 679 by the prime integers in the range

(1, 27] = {2, 3, 5, 7, 11, 13, 17, 19, 23}. We find 2, 3, 5 - 679, but 7|679 →
679 = 7 · 97. We check if 97 is prime; it is, so we are done.

Trial division on a modern computer is fairly quick for numbers up to
about 10 digits in length. For example, an integer close to 10000000000,
would have primes in the range (1, 100000] and there are π(100000) = 9592

1

2 ELVIS NUNEZ AND CHRIS SHAW

primes in this range. Assuming these primes have been stored in memory, it
follows at most 9592 divisions occur while trying to factor such an integer,
which could be done fairly quickly on a modern computer. However, this
method is inefficient for large n. In particular, if n has 100 digits and is the
product of 2 primes, we would have to check approximately 1047 primes in
the possible range. Even on a modern computer, this could take years to
compute. As we will explore in the coming sections, there are other methods
of factoring numbers that do not rely on blindly testing integers.

3. Fermat’s Algorithm

The heart of Fermat’s algorithm lies in the following observation: If n
can be written as a difference of squares such that n = a2 − b2, then n =
(a+ b)(a− b). With this observation, we can define Fermat’s Algorithm.

Definition 3.1. Fermat’s Algorithm: Suppose we want to factor n. We
will search for two numbers a, b such that n = a2 − b2 = (a+ b)(a− b). We
begin by setting a equal to d

√
n e and increase b until either a2 − b2 = n, in

which case we have found factors of n, or if a2 − b2 < n, in which case we
increment a by 1, and repeat the algorithm. Expressed differently, we will
check if a2−n is a square; if it is we are done, if not we will increment a by
1 until a2 − n is a square.

Proof. We present a proof that Fermat’s algorithm will terminate. Let p, q
be factors of n and n composite so that n = p · q. Note that because n is
odd, p, q must be odd. We can now write:

n = pq =
1

4
(2pq + 2pq) =

1

4
((p+ q)2 − (p− q)2) =

(
p+ q

2

)2

−
(
p− q

2

)2

Let a =
(p+q

2

)2
and b =

(p−q
2

)2
. We now have n = a2 − b2. Note that

because p, q are odd, p± q is even, making a, b integers.
We now show that that if we begin by letting a = d

√
n e and increment

by 1 until a2 − n is a square, the algorithm will eventually terminate. We
first justify initializing a = d

√
n e. Suppose a <

√
n. It follows n = a2−b2 <

(
√
n)

2 − b2 = n − b2 so 0 < −b2, which is false since the right hand side of
this inequality is negative.

Now suppose a ≥ n+1
2 . We claim that if this occurs, then n is prime,

contradicting our assumption that n is composite. If a ≥ n+1
2 , then n ≥(

n+1
2

)2−b2 so b2 ≥ n2

4 + n
2 + 1

4−n so b ≥ n−1
2 It follows a+b ≥ n+1

2 + n−1
2 = n.

This is true only when a+ b = n and a− b = 1; or, in other words, when n
is prime. �

FACTORIZATION TECHNIQUES 3

Example 3.2. Suppose we want to factor 16463. We begin by first calcu-
lating d

√
16463e = 129 We intialize a = 129 and calculate:

a a2 a2 − n square?
129 16641 178 no
130 16900 437 no
131 17161 698 no
132 17424 961 yes

As seen in the table above, we find a = 132 and b = 31. Thus, n =
(132 + 31)(132− 31) = 163 · 101. We check if these numbers are prime, they
are, so we are done.

Fermat’s algorithm can quickly find the factors of n if one of these factors
is near

√
n. However, this algorithm can be worse than trial division when

the factors of n are far from
√
n. The worst case occurs when n is prime.

Fermat’s Algorithm would require n−
√
n trials to discover n is prime. By

trial division, however, only
√
n trials are necessary. It is interesting to note

that because many modern cryptography systems rely on the difficulty of
factoring numbers, large non-prime numbers are chosen so that their factors
are not close to

√
n, otherwise they could be factored very quickly.

In the next section we will explore a more efficient method of finding num-
bers a, b such that n = a2−b2 that does not require successively incrementing
a until the conditions are met.

4. Kraitchik’s Algorithm

Kraitchik’s algorithm can be thought of as an improvement of Fermat’s
algorithm. Rather than searching for numbers a, b such that n = a2 − b2,
we will search for random numbers a, b such that a2 ≡ b2 (mod n). In other
words, we will search for a, b such that (a+ b)(a− b) is a multiple of n.

Theorem 4.1. Kraitchik’s algorithm: Given a2 ≡ b2 (mod n), it follows
n|(a − b)(a + b). This has trivial solutions when a ≡ ±b (mod n); these
trivial solutions appear less than 50% of the time. In every other case,
solving this congruence finds a nontrivial factor.

When applying Kraitchik’s method, we will only consider solutions to
the congruence a2 ≡ b2 (mod n) such that a 6≡ b (mod n). Without this
restriction, when applying the Euclidean algorithm we would find that the
gcd(n, a± b) = n, which results in a trivial divisor of n.

In practice, Kraitchik’s algorithm is used in conjunction with Fermat’s
algorithm. Recall Fermat’s algorithm looks for a, b such that b2 = a2 − n.
Kraitchik’s algorithm multiplies the results from Fermat’s algorithm, that
is, a2i −n until a square is found. We illustrate this in the following example.

4 ELVIS NUNEZ AND CHRIS SHAW

Example 4.2. Suppose we want to factor n = 5349. We begin by initializing
a = d

√
5349 e = 74. We apply Fermat’s algorithm:

a a2 − n a2 − n factored
75 276 22 · 3 · 23
76 427 7 · 61
77 580 22 · 5 · 29
78 735 3 · 5 · 72
79 892 22 · 223
81 1212 22 · 3 · 101
82 1375 53 · 11
83 1540 22 · 5 · 7 · 11
84 1707 3 · 569
85 1876 22 · 7 · 67
86 2047 23 · 89
87 2220 22 · 3 · 5 · 37
88 2395 5 · 479
89 2572 22 · 643
90 2751 3 · 7 · 131
91 2932 22 · 733
92 3115 5 · 7 · 89
93 3300 22 · 3 · 52 · 11

Note we have omitted values for which a2 − n is prime. After computing
several values using Fermat’s algorithm, Kraitchik’s algorithm looks for pos-
sible combinations of a2i − n such that the result is a square. An easy way
of doing this is by looking at the factored form of a2i − n and ensuring the
exponents are even when the product is taken. In our example, consider
a78 · a82 · a93 we take the product to obtain a = 78 · 82 · 93 = 594828.
We calculate b = (3 · 5 · 72)(53 · 11)(22 · 3 · 52 · 11) = 22 · 32 · 56 · 72 · 112

which is a square since all exponents are even and can be expressed as
(2 · 3 · 53 · 7 · 11)2; thus, b = 6930. We know use the Euclidean algorithm
to calculate gcd(n, a+ b) = gcd(n, 594828 + 6930) = 3. Thus, we find 3 is a
nontrivial factor of n. We can then calculate the second factor by dividing
n by 3: n

3 = 1783. We check if these are prime; they are, so we are done.

As shown by the previous example, Kraitchik’s algorithm still relies on
trial and error. A more systematic approach to finding a, b was found by D.H
Lehmer and R.E. Powers which utilizes continued fractions. The advent of
powerful computing led John Brillhart and Michael Morrison to develop the
continued fraction algorithm (CFRAC) in the 1970s. This algorithm can be
thought of as the forerunner of the factoring techniques we will explore in
the next sections.

FACTORIZATION TECHNIQUES 5

5. Dixon’s Algorithm

Before discussing Dixon’s algorithm, we present a few definitions.

Definition 5.1. Smooth number: We say n is B-smooth if the largest prime
divisor of n is less than B. For example 4959 = 32 · 19 · 29; therefore, we
can say 4959 is 29-smooth. B need not necessarily be prime, as long as the
largest divisor of n is less than B. Thus, we can also say 4959 is 50-smooth.

Definition 5.2. Factor base: A set of primes bounded by some bound B.
For example, {2, 3, 5, 7, 11} is a factor base bounded by 11. We will denote
factor bases with the letter P and subscript denoting the bound B. Thus,
the example given will be expressed as P11.

Definition 5.3. Factor vector: We call the vector v(n) a factor vector if
each index in v denotes its corresponding prime power where each index i
corresponds to the ith prime number. For example, 2520 = 23 · 32 · 5 · 7.
Thus, v(2520) = {3, 2, 1, 1}.

Recall the Fermat and Kraitchik algorithms search for a, b such that a2 ≡
b2 (mod n). Dixon’s algorithm does not search for a, b such that a2−n is a
square, but rather searches for some a2 − n that has only small factors. We
describe Dixon’s algorithm below.

Definition 5.4. Dixon’s algorithm: Suppose we are trying to factor n and
n is not prime. We will start by choosing some bound B and create a factor
base PB. We will then look for integers a such that a2 (mod n) is B-smooth.
By the definition of smooth numbers and factor bases, if a2 (mod n) is B-
smooth, it follows ∏

pi∈P
pxi
i ≡ a

2 (mod n)

For some appropriately chosen exponents xi. By the properties of modular
arithmetic:

a2 ≡
∏
pi∈P

pxi
i (mod n)

We will repeat this process many times (typically slightly larger than the
cardinality of P), recording each factor vector from the exponents xi on
each iteration. With these vectors we can construct a matrix and reduce all
exponents modulo 2 and then draw from linear algebra methods to find a
product such that the exponents are all even (this is similar to the Kraitchik
example above). We are essentially looking for a set of vectors that are
linearly dependent over Z/Z2. To find such a product, we can use Gaussian
elimination. Mathematically, we can express this as

a21 · a22 · · · a2k ≡
∏
pi∈P

p
ai,1+···+ai,k
i (mod n)

6 ELVIS NUNEZ AND CHRIS SHAW

where the exponents ai,1 + · · · + ai,k are even. This gives us our previous
congruence of the form a2 ≡ b2 (mod n) where

a2 = (a1 · · · ak)2

and
b2 =

∏
pi∈P

p
ai,1+···+ai,k
i

As discussed before, we proceed to find the gcd(n, a ± b) to find the factor
of n. If this is a nontrivial factor, we are done, otherwise we try again with
a different combination of vectors from the one chosen above.

We illustrate Dixon’s algorithm with the following example.

Example 5.5. Suppose we want to factor n = 84923. We will use the bound
B = 7. Thus our factor base P is P = {2, 3, 5, 7}. We will then randomly
test numbers between d

√
84923e = 292 and 84923 whose squares modulo n

are 7-smooth. We now randomly test numbers between d
√

84923e = 292 and
84923 whose squares modulo n are 7-smooth. Suppose we find the following
random number:

193372 (mod 84923) ≡ 3600 = 24 · 32 · 52

In this case, our result is already a square: 3600 = 602 meaning we have
found a = 19337 and b = 60 whose squares are congruent mod n, and can
continue as in Kraitchik’s Method. Suppose we do not find a 7-smooth
square right away, and instead find the following random numbers:

19652 (mod 84923) ≡ 39690 = 2 · 34 · 5 · 72

89542 (mod 84923) ≡ 6804 = 22 · 35 · 7
245242 (mod 84923) ≡ 1890 = 2 · 33 · 5 · 7

We then construct the following matrix that corresponds to the factor
vectors of our results: 1 4 1 2

2 5 0 1
1 3 1 1

We then take this matrix and reduce modulo 2: 1 0 1 0

0 1 0 1
1 1 1 1

We now want to try to find a set of vectors that are linearly dependent in
Z/Z2. It is clear in this example that multiplying all three numbers will result
in a number with even coefficients. In more complicated problems, methods
such as Gaussian elimination can be employed.

39690 · 6804 · 1890 = 24 · 312 · 52 · 74

which is a square.

FACTORIZATION TECHNIQUES 7

We now have a relationship in the form a2 ≡ b2 (mod 84923) where

a = 1965 · 8954 · 24524 = 431490215640 ≡ 19406 (mod 84923)

b =
√

39690 · 6804 · 1890 = 714420 ≡ 35036 (mod 84923)

And finally, just like in Kraitchik’s Method, we can use the Euclidean
algorithm to compute:

gcd(84923, 19406 + 35036) = 163

gcd(84923, 19406− 35036) = 521

We check if these are prime; they are, so we are done.

6. Refernces

(1) David M. Bressoud, Factorization and Primality Testing, Springer,
1989.

