
Continued Fractions and Pell’s Equation

Max Lahn Jonathan Spiegel

May 2, 2016

Abstract

Continued fractions provide a useful, and arguably more natural, way to understand and
represent real numbers as an alternative to decimal expansions. In this paper, we enumerate
some of the most salient qualities of simple continued fraction representations of real numbers,
classify the periodic continued fractions as the quadratic irrationals, and use simple continued
fractions to find the integer solutions (x, y) ∈ Z2 to the generalized Pell’s equation x2−Dy2 =
(−1)m.

To begin, let us define a finite simple continued fraction. Finite simple continued fractions are

a method for representing the rational numbers Q =
{a
b

: a, b ∈ Z ; b 6= 0
}

, and

Definition 1 (Finite simple continued fraction). Let n ∈ N be a natural number, and let (ai)
n
i=0 =

(a0, . . . , an) be a finite sequence of natural numbers a0, . . . , an ∈ N. The finite simple continued

fraction generated by (ai)
n
i=0, denoted

n

K
i=0

ai, is defined as follows.

n

K
i=0

ai = a0 +
1

a1 +
1

. . .
1

an

.

Now, we use the Euclidean algorithm to generate a finite simple continued fraction representation
for any rational number. Recall that the Euclidean algorithm recursively generates sequences
(qi)

n
n=0 of quotients qi ∈ N and (ri)

n
n=0 of remainders ri ∈ N from two integer inputs a, b ∈ N, and

terminates with rn−1 = gcd (a, b) and rn = 0.

Example 1. Let
a

b
∈ Q be a rational number. Let (qi)

n
i=0 be the finite sequence of natural numbers

q1, . . . , qn ∈ N generated by the quotients in the Euclidean algorithm applied to a and b. Then

n

K
i=0

qi =
a

b
.

For example, let a = 38 and b = 9. Note that

38 = (4) (9) + 2;

9 = (4) (2) + 1;

2 = (2) (2) + 0.
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So, letting (ai)
2
i=0 = (4, 4, 2), we have that

39

9
=

2

K
i=0

ai = 4 +
1

4 +
1

2

.

In this way, we have a canonical way of representing any rational number
a

b
as a finite simple

continued fraction. Moreover, it can be shown that every (noninteger) rational number has precisely
two finite simple continued fraction representations, each differing only in the last two terms of the
finite generating sequences. For example, let (bi)

3
i=0 = (4, 4, 1, 1), and note that

38

9
=

2

K
i=0

ai = 4 +
1

4 +
1

2

= 4 +
1

4 +
1

1 +
1

1

=
3

K
i=0

bi.

Definition 2 (Infinite simple continued fraction). Let (ai)
∞
i=0 be an infinite sequence of natural

numbers a0, a1, a2, . . . ∈ N. The infinite simple continued fraction generated by (ai)
∞
i=0, denoted

∞
K
i=0

ai, is defined to be the limit of the partial simple continued fractions.

∞
K
i=0

ai = lim
n→∞

n

K
i=0

ai. (1)

For any infinite sequence (ai)
∞
i=0 of natural numbers ai ∈ N, we have defined an infinite sequence of

finite simple continued fractions

(
n

K
i=0

ai

)∞
n=0

, where
n

K
i=0

ai is called the nth convergent. However, it

remains to show that such a sequence must converge to a limiting value.

1 Convergence of Simple Continued Fractions

Theorem 1. Let (ai)
∞
i=0 be an infinite sequence of natural numbers ai ∈ N. Then the sequence(

n

K
i=0

ai

)∞
n=0

of convergents
n

K
i=0

ai converges to a real number
∞
K
i=0

ai ∈ R.

Proof. Let pn and qn be the numerator and denominator of the nth convergent
n

K
i=0

ai.

Lemma 1. The infinite sequences (pn)
∞
n=0 and (qn)

∞
n=0 satisfy the following recursion relations.

pn =


a0, if n = 0;

a1a0 + 1, if n = 1; and

anpn−1 + pn−2, otherwise,

(2)

and

qn =


1, if n = 0;

a1, if n = 1; and

anqn−1 + qn−2, otherwise.

(3)
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Proof. By induction on n ∈ N.
Base cases: For the first base case, suppose that n = 0. Note that

p0
q0

=
0

K
i=0

ai = ai =
a0
1
,

as desired.
For the second base case, suppose that n = 1. Note that

p1
q1

=
1

K
i=0

ai = a0 +
1

a1
=
a1a0 + 1

a1
,

as desired.
Inductive step: Suppose for the inductive hypothesis that the lemma holds for all n < k, for

some natural number k > 1. Let (a′i)
k
i=0 be the finite sequence of natural numbers a′i ∈ N defined

as follows.

(a′i)
k
i=0 =

(
a1, . . . , ak−1, ak +

1

ak+1

)
.

Note that
k

K
i=0

a′i =
k+1

K
i=0

ai. By the induction hypothesis,

pk+1

qk+1
=
p′k
q′k

=
a′kp
′
k−1 + p′k−2

a′kq
′
k−1 + q′k−2

=

(
ak + 1

ak+1

)
pk−1 + pk−2(

ak + 1
ak+1

)
qk−1 + qk−2

=
ak+1 (akpk−1 + pk−2) + pk−1
ak+1 (akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1
ak+1qk + qk−1

,

as desired.

Lemma 2.
pn−1
qn−1

− pn
qn

=
(−1)

n

qn−1qn
for all natural numbers n ∈ N.

Proof. By induction on n ∈ N.

Base case: Suppose that n = 1. Then
p0
q0
− p1
q1

=
a0
1
− a1a0 + 1

a1
= − 1

a1
= − 1

q0q1
, as desired.

Inductive step: Suppose for the inductive hypothesis that

pn−2
qn−2

− pn−1
qn−1

=
(−1)

n−1

qn−2qn−1

pn−2qn−1 − pn−1qn−2 = (−1)
n−1

.

Then

pn−1qn − pnqn−1 = pn−1 (anqn−1 + qn−2)− (anpn−1 + pn−2) qn−1

= pn−1qn−2 − pn−2qn−1 = (−1)
n

pn−1
qn−1

− pn
qn

=
(−1)

n

qn−1qn
,

as desired.
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Therefore, since (qn)
∞
n=0 is a strictly increasing sequence of integers, for all natural numbers

m > n ∈ N, ∣∣∣∣ mKi=0
ai −

n

K
i=0

ai

∣∣∣∣ =

∣∣∣∣pmqm − pn
qn

∣∣∣∣ ≤ m∑
i=n+1

∣∣∣∣piqi − pi−1
qi−1

∣∣∣∣ =

m∑
i=n+1

1

qiqi−1
→ 0

approaches 0 as m,n → ∞, since qi grows linearly. Therefore, the convergents

(
n

K
i=0

ai

)∞
n=0

=(
pn
qn

)∞
n=0

is a Cauchy sequence of rational numbers
n

K
i=0

ai ∈ Q, and so converges to some real

number
∞
K
i=0

ai ∈ R, since the real numbers R form a complete metric space.

2 Continued Fraction Representations of Real Numbers

In many ways, continued fractions are a more natural way to represent real numbers than decimal
expansions. As shown above, the generating sequence of the simple continued fraction of the ratio
of two numbers is the quotient sequence constructed by the Euclidean algorithm, and so the simple
continued fraction representation of a rational number contains a vast wealth of information about
the number, whereas the decimal expansions (indeed, the n-ary expansions for any base n ∈ N) of
many simple fractions obscure such information.

The Euclidean algorithm technique demonstrated above can be generalized to find the continued
fraction representation of an irrational number x ∈ R \ Q in the same manner. However, such an
algorithm is not guaranteed to terminate as it is in the case of the rational numbers Q. In fact, if a
number x ∈ R \Q is irrational, such a process cannot possibly terminate, since termination would
imply that there is a finite simple continued fraction representation for x, which would imply that
x were rational.

As shown below, the simple continued fraction representations of some irrational numbers have
interesting and beautiful forms. We will see an example of such beauty, and then we will see a
theorem about those irrational numbers whose simple continued fraction representations repeat.

Example 2. Let ϕ =
1 +
√

5

2
be the golden ratio. ϕ has continued fraction representation

ϕ =
∞
K
i=0

1 = 1 +
1

1 +
1

1 +
1

. . .

(4)

Proof. Consider the simple continued fraction
∞
K
i=0

1. Since it repeats with a period of 1, we have

the simple recurrence relation
∞
K
i=0

= 1 +
1

K∞i=0

, which follows immediately from Equation (4). This
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implies that

0 =

(
∞
K
i=0

1

)2

−
∞
K
i=0
−1

∞
K
i=0

=
1±
√

5

2
.

From our definition of
∞
K
i=0

1 in Equation (4), we know that
∞
K
i=0

1 > 1, so
∞
K
i=0

1 =
1 +
√

5

2
= ϕ, as

desired.

The above technique may be generalized and used to show that any repeating simple continued
fraction is an irrational solution to a quadratic equation with integer coefficients, by solving the
recurrence relation generated by the repetition. We offer the following theorem without proof.

Theorem 2. Let (ai)
∞
i=1 be an infinite sequence of natural numbers ai ∈ N. If (ai)

∞
i=1 eventually

repeats, then α =
∞
K
i=0

ai is an irrational solution to a quadratic equation with integer coefficients.

Proof. Suppose that (ai)
∞
i=1 eventually repeats. It suffices to show that α =

∞
K
i=1

ai is a quadratic

irrational in the case where (ai)
∞
i=1 is purely periodic. Therefore, let (ai)

∞
i=1 = (a0, . . . , an). So

α = a0 +
1

a1 +
1

. . . +
1

an +
1

α

.

We may reduce this to α =
uα+ v

wα+ z
, for some positive integers u, v, w, z ∈ N. So

α (wα+ z) = uα+ v

wα2 + zα = uα+ v

wα2 + (z − u)α− v = 0.

So α is a solution to the quadratic equation wx2 + (z − u)x − v = 0. Moreover, since α =
∞
K
i=0

ai

is an infinite simple continued fraction, α ∈ R \ Q is irrational. So α is a quadratic irrational, as
desired.

3 Pell’s Equation

Let D ∈ N be a natural number, and suppose that D is not a perfect square; that is, there does
not exist an integer k ∈ Z such that k2 = D. The Diophantine equation

x2 −Dy2 = 1 (5)
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is known as Pell’s equation, and we can use the simple continued fraction representation of
√
D to

solve it.

Theorem 3. Let D ∈ N be a natural number, and suppose that D is not a perfect square.
√
D has

simple continued fraction representation generated by the repeating sequence (a0, a1, . . . , am). Let
p

q
=

m−1
K
i=0

ai. Then (x, y) = (p, q) ∈ Z2 are the smallest integer solutions to the generalized Pell’s

equation,
x2 −Dy2 = (−1)

m
. (6)

Example 3. Consider Pell’s equation in the case D = 21,

x2 − 21y2 = 1. (7)

Note that
√

21 has continued fraction representation
√

21 = K
(
4, 1, 1, 2, 1, 1, 8

)
, so m = 6. m− 1 =

5, and the 5th convergent is

K (4, 1, 1, 2, 1, 1) = 4 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1

=
55

12
.

So (x, y) = (55, 12) is the smallest solution in integers to the generalized Pell’s equation, Equa-
tion (7), x2 − 21y2 = (−1)

m
= 1, as desired. Moreover, the solution set S to Pell’s equation is as

follows.

S =

{
(xk, yk) ∈ Z2 :

(
55 + 12

√
21
)k

= xk + yk
√

21

}∞
k=1

.

Example 4. We may still solve Pell’s equation in the case where m is odd, by squaring the solutions.
Consider Pell’s equation in the case D = 29,

x2 − 29y2 = 1. (8)

Note that
√

29 has continued fraction representation
√

29 = K
(
5, 2, 1, 1, 2, 10

)
, so m = 5. m−1 = 4,

and the 4th convergent is

K(5, 2, 1, 1, 2) = 5 +
1

2 +
1

1 +
1

1 +
1

2

=
70

13
.

So (x, y) = (70, 13) is the smallest solution in integers to the generalized Pell’s equation, x2−29y2 =
(−1)

m
= −1, as desired. So, squaring both sides of the generalized Pell’s equation, the smallest

solution in integers to Pell’s equation, Equation (8), is (x, y) =
(

702 + 29 (13)
2
, 2 (70) (13)

)
=

(9801, 1820). Moreover, the solution set S to Pell’s equation is as follows.

S =

{
(xk, yk) ∈ Z2 :

(
9801 + 1820

√
29
)k

= xk + yk
√

21

}∞
k=1

.
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Continued fractions provide a natural and useful way to approach representing real numbers.
The generating sequences of simple continued fractions are interestingly connected to the Euclidean
algorithm, which stems from the natural association of rational numbers and greatest common
divisors. Moreover, the simple continued fraction representations of the quadratic irrationals provide
a quick and easy way to solve Pell’s equation, which would otherwise prove difficult.
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