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This is a brief supplemental note on the Gaussian integers, written for my
Spring 2016 Elementary Number Class at Brown University. With respect
to the book, the nearest material is the material in Chapters 35 and 36, but
we take a very different approach.

In this note, we cover the following topics.

(1) What are the Gaussian integers?

(2) Unique factorization within the Gaussian integers.

(3) An application of the Gaussian integers to the Diophantine equation
y? =a3 — 1.

(4) Other integer-like sets: general rings.

(5) Specific examples within Z[v/2] and Z[y/—5].

1. WHAT ARE THE GAUSSIAN INTEGERS?

The Gaussian Integers are the set of numbers of the form a + bi, where
a and b are normal integers and i is a number satisfying > = —1. As
a collection, the Gaussian Integers are represented by the symbol Z[i], or
sometimes Z[v/—1]. These might be pronounced either as The Gaussian
Integers or as Z append 1.

In many ways, the Gaussian integers behave very much like the regular
integers. We've been studying the qualities of the integers, but we should
ask — which properties are really properties of the integers, and which
properties hold in greater generality? Is it the integers themselves that are
special, or is there something bigger and deeper going on?

These are the main questions that we ask and make some progress towards
in these notes. But first, we need to describe some properties of Gaussian
integers.

We will usually use the symbols z = a+ bi to represent our typical Gauss-
ian integer. One adds and multiples two Gaussian integers just as you would
add and multiply two complex numbers. Informally, you treat i like a poly-
nomial indeterminate X, except that it satisfies the relation X2 = —1.

Definition 1. For each complex number z = a+bi, we define the conjugate
of z, written as Z, by
zZ=a— bi.
We also define the norm of z, written as N(z), by
N(z) = a* + V*.
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You can check that N(z) = 2Z (and in fact this is one of your assigned
problems). You can also chack that N(zw) = N(z)N(w), or rather that the
norm is multiplicative (this is also one of your assigned problems).

Even from our notation, it’s intuitive that z = a + bi has two parts, the
part corresponding to a and the part corresponding to b. We call a the real
part of z, written as Rez = a, and we call b the imaginary part of z,
written as Im z = b. I should add that the name “imaginary number” is a
poor name that reflects historical reluctance to view complex numbers as
acceptable. For that matter, the name “complex number” is also a poor
name.

As a brief example, consider the Gaussian integer z = 2 + 5i. Then
N(z)=4+25=29, Rez=2,Imz =5, and Z =2 — 5i.

We can ask similar questions to those we asked about the regular integers.
What does it mean for z | w in the complex case?

Definition 2. We say that a Gaussian integer z divides another Gaussian
integer w if there is some Gaussian integer k so that zk = w. In this case,
we write z | w, just as we write for regular integers.

For the integers, we immediately began to study the properties of the
primes, which in many ways were the building blocks of the integers. Recall
that for the regular integers, we said p was a prime if its only divisors were
+1 and 4+p. In the Gaussian integers, the four numbers £1, 47 play the
same role as +1 in the usual integers. These four numbers are distinguished
as being the only four Gaussian integers with norm equal to 1.

That is, the only solutions to N(z) = 1 where z is a Gaussian integer are
z = +1,+i. We call these four numbers the Gaussian units.

With this in mind, we are ready to define the notion of a prime for the
Gaussian integers.

Definition 3. We say that a Gaussian integer z with N(z) > 1 is a Gauss-
tan prime if the only divisors of z are u and uz, where uw = +1,+i is a
Gaussian unit.

Remark. When we look at other integer-like sets, we will actually use a
different definition of a prime.

It’s natural to ask whether the normal primes in Z are also primes in Z[i].
And the answer is no. For instance, 5 is a prime in Z, but

5= (1+4i)(1 — 4)

in the Gaussian integers. However, the two Gaussian integers 1 4 4¢ and
1 — 44 are prime. It also happens to be that 3 is a Gaussian prime. We will
continue to investigate which numbers are Gaussian primes over the next
few lectures.

With a concept of a prime, it’s also natural to ask whether or not the
primes form the building blocks for the Gaussian integers like they form the
building blocks for the regular integers. We take up this in our next topic.
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2. UNIQUE FACTORIZATION IN THE (GAUSSIAN INTEGERS

Let us review the steps that we followed to prove unique factorization for
7.

(1) We proved that for a,b in Z with b # 0, there exist unique ¢ and
r such that a = bg + r with 0 < r < b. This is called the Division
Algorithm.

(2) By repeatedly applying the Division Algorithm, we proved the Eu-
clidean Algorithm. In particular, we showed that the last nonzero
remainder was the GCD of our initial numbers.

(3) By performing reverse substition on the steps of the Euclidean Al-
gorithm, we showed that there are integer solutions in x,y to the
Diophantine equation ax + by = ged(a,b). This is often called Be-
zout’s Theorem or Bezout’s Lemma, although we never called it by
that name in class.

(4) With Bezout’s Theorem, we showed that if a prime p divides ab,
then p | @ or p | b. This is the crucial step towards proving Unique
Factorization.

(5) We then proved Unique Factorization.

Each step of this process can be repeatred for the Gaussian integers, with
a few notable differences. Remarkably, once we have the division algorithm,
each proof is almost identical for Z[i] as it is for Z. So we will prove the di-
vision algorithm, and then give sketches of the remaining ideas, highlighting
the differences that come up along the way.

In the division algorithm, we require the remainder r to “be less than
what we are dividing by.” A big problem in translating this to the Gaussian
integers is that the Gaussian integers are not ordered. That is, we don’t
have a concept of being greater than or less than for Z[i].

When this sort of problem emerges, we will get around this by taking
norms. Since the norm of a Gaussian integer is a typical integer, we will be
able to use the ordering of the integers to order our norms.

Theorem 4. For z,w in Z[i] with w # 0, there exist ¢ and r in Z[i] such
that z = qw + r with N(r) < N(w).

Proof. Here, we will cheat a little bit and use properties about general com-
plex numbers and the rationals to perform this proof. One can give an
entirely intrinsic proof, but I like the approach I give as it also informs how
to actually compute the ¢ and r.

The entire proof boils down to the idea of writing z/w as a fraction and
approximating the real and imaginary parts by the nearest integers.

Let us now transcribe that idea. We will need to introduce some additional
symbols. Let z = a; + b1i and w = as + bai.
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Then
z a1 + byt - a1 + bii ag — bt
E N ag + bat - as + bai ag — bat
_ajaz +biby | braz —aiby
a3+ b3 a3 + b3
=u+ .

By rationalizing the denominator by multiplying by w/w, we are able to
separate out the real and imaginary parts. In this final expression, we have
named u to be the real part and v to be the imaginary part. Notice that u
and v are normal rational numbers.

We know that for any rational number u, there is an integer u' such
that |u — /| < 1. Let «’ and v’ be integers within 1/2 of u and v above,
respectively.

Then we claim that we can choose ¢ = u’ +iv’ to be the ¢ in the theorem
statement, and let r be the resulting remainder, r = z — qw. We need to
check that N(r) < N(w). We will check that explicitly.

We compute

N(T):N(z—qw):N(w (g—q)) :N(w)N<§—q>.

Note that we have used that N(ab) = N(a)N(b). In this final expression,
we have already come across = before — it’s exactly what we called u + iv.
And we called ¢ = v/ + iv’. So our final expression is the same as

N(r) = N(w)N(u+iv—u —iv') = N(w)N ((u—u') +i(v—0")).

How large can the real and imaginary parts of (u — u’) + i(v — v’) be? By
our choice of v’ and ', they can be at most 1/2.
So we have that

1
N() < N@)N ((3)° + () = 5N (w).
And so in particular, we have that N(r) < N(w) as we needed. O

Note that in this proof, we did not actually show that ¢ or r are unique.
In fact, unlike the case in the regular integers, it is not true that ¢ and r are
unique.

Example. Consider 3 + 5i,1 + 2i. Then we compute
345 _3+5il—-2 —EJri_—l.
142 14+201-20 5 5
The closest integer to 13/5 is 3, and the closest integer to —1/5 is 0. So we
take ¢ = 3. Then r = (3 + 5i) — (1 + 2i)3 = —i, and we see in total that
3+5i=(14+29)3 —1.

Note that N(—i) =1 and N(1+ 2i) =5, so this choice of ¢ and r works.
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As 13/5 is sort of close to 2, what if we chose ¢ = 2 instead? Then
r=(345i) — (14 2i)2 =141, leading to the overall expression

35i = (1420)2 + (1 +1i).

Note that N(1+1i) =2 < N(1+ 2i) =5, so that this choice of ¢ and r also
works.

This is an example of how the choice of ¢ and r is not well-defined for
the Gaussian integers. In fact, even if one decides to choose q to that N(r)
is minimal, the resulting choices are still not necessarily unique.

This may come as a surprise. The letters ¢ and r come from our tendency
to call those numbers the quotient and remainder after division. We have
shown that the quotient and remainder are not well-defined, so it does not
make sense to talk about “the remainder” or “the quotient.” This is a bit
strange!

Are we able to prove unique factorization when the process of division
itself seems to lead to ambiguities? Let us proceed forwards and try to see.

Our next goal is to prove the Euclidean Algorithm. By this, we mean that
by repeatedly performing the division algorithm starting with two Gaussian
integers z and w, we hope to get a sequence of remainders with the last
nonzero remainder giving a greatest common divisor of z and w.

Before we can do that, we need to ask a much more basic question. What
do we mean by a greatest common divisor? In particular, the Gaussian
integers are not ordered, so it does not make sense to say whether one
Gaussian integer is bigger than another.

For instance, is it true that ¢ > 1?7 If so, then certainly ¢ is positive.
We know that multiplying both sides of an inequality by a positive number
doesn’t change that inequality. So multiplying ¢ > 1 by ¢ leads to —1 > 1,
which is absurd if ¢ was supposed to be positive!

To remedy this problem, we will choose a common divisor of z and w
with the greatest norm (which makes sense, as the norm is a regular integer
and thus is well-ordered). But the problem here, just as with the division
algorithm, is that there may or may not be multiple such numbers. So we
cannot talk about “the greatest common divisor” and instead talk about “a
greatest common divisor.” To paraphrase Lewis Carroll’s’ Alice, things are
getting curiouser and curiouser!

Definition 5. For nonzero z,w in Z[i], a greatest common divisor of z
and w, denoted by ged(z,w), is a common divisor with largest norm. That
is, if ¢ is another common divisor of z and w, then N(c) < N(ged(z,w)).

If N(ged(z,w)) = 1, then we say that z and w are relatively prime. Said
differently, if 1 is a greatest common divisor of z and w, then we say that z
and w are relatively prime.

LCarroll was also a mathematician, and hid some nice mathematics inside some of his
works.
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Remark. Note that ged(z,w) as we’re writing it is not actually well-defined,
and may stand for any greatest common divisor of z and w.

With this definition in mind, the proof of the Euclidean Algorithm is
almost identical to the proof of the Euclidean Algorithm for the regular
integers. As with the regular integers, we need the following result, which
we will use over and over again.

Lemma 6. Suppose that z | wy and z | wa. Then for any x,y in Zli], we
have that z | (xw1 + ywo).

Proof. As z | wy, there is some Gaussian integer k; such that zk; = wy.
Similarly, there is some Gaussian integer ko such that zks = wo.

Then xwy + ywe = zxky + zyks = z(xky + yka), which is divisible by z as
this is the definition of divisibility. O

Notice that this proof is identical to the analogous statement in the inte-
gers, except with differently chosen symbols. That is how the proof of the
Fuclidean Algorithm goes as well.

Theorem 7. let z,w be nonzero Gaussian integers. Recursively apply the
division algorithm, starting with the pair z,w and then choosing the quotient
and remainder in one equation the new pair for the next. The last nonzero
remainder is divisible by all common divisors of z,w, is itself a common
divisor, and so the last nonzero remainder is a greatest common divisor of
z and w.

Symbolically, this looks like

z=quw+r, N(r)<N(w)
w=qory +r2, N(rz) <N(r)
r1 =q3ra +13, N(r3) < N(r2)

Tk = Qe2Th+1 + Tht2,  N(Tre2) < N(Tp41)
Tht1 = Qr+3Tk+2 + 0,

where 112 s the last nonzero remainder, which we claim is a greatest com-
mon divisor of z and w.

Proof. We are claiming several thing. Firstly, we should prove our implicit
claim that this algorithm terminates at all. Is it obvious that we should
eventually reach a zero remainder?

In order to see this, we look at the norms of the remainders. After each
step in the algorithm, the norm of the remainder is smaller than the previous
step. As the norms are always nonnegative integers, and we know there does
not exist an infinite list of decreasing positive integers, we see that the list
of nonzero remainders is finite. So the algorithm terminates.

We now want to prove that the last nonzero remainder is a common divisor
and is in fact a greatest common divisor. The proof is actually identical to
the proof in the integer case, merely with a different choice of symbols.
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Here, we only sketch the argument. Then the rest of the argument can
be found by comparing with the proof of the Euclidean Algorithm for Z as
found in the course textbook.

For ease of exposition, suppose that the algorithm terminated in exatly 3
steps, so that we have

z=qw+r,
w = qar1 + T2
r1 = qsre + 0.

On the one hand, suppose that d is a common divisor of z and w. Then
by our previous lemma, d | z — ggw = r1, so that we see that d is a divisor
of r1 as well. Applying to the next line, we have that d | w and d | r1, so
that d | w — gar1 = 2. So every common divisor of z and w is a divisor of
the last nonzero remainder rs.

On the other hand, ry | 71 by the last line of the algorithm. Then as
ro | r1 and 7o | r1, we know that r9 | gor1 + ro = w. Applying this to the
first line, as ro | r1 and 7o | w, we know that ro | qw +r1 = z. So o is a
common divisor.

We have shown that 79 is a common divisor of z and w, and that every
common divisor of z and w divides 3. How do we show that ro is a greatest
common divisor?

Suppose that d is a common divisor of z and w, so that we know that
d | 2. In particular, this means that there is some nonzero k so that dk = rs.
Taking norms, this means that N(dk) = N(d)N(k) = N(rz). As N(d) and
N (k) are both at least 1, this means that N(d) < N(r2).

This is true for every common divisor d, and so N(r2) is at least as large as
the norm of any common divisor of z and w. Thus 73 is a greatest common
divisor.

The argument carries on in the same way for when there are more steps
in the algorithm. ([

Theorem 8. The greatest common divisor of z and w is well-defined, up to
multiplication by £1,+i. In other words, if ged(z,w) is a greatest common
divisor of z and w, then all greatest common divisors of z and w are given
by +ged(z, w), tiged(z, w).

Proof. Suppose d is a greatest common divisor, and let ged(z,w) denote
a greatest common divisor resulting from an application of the Euclidean
Algorithm. Then we know that d | ged(z, w), so that there is some k so that
dk = ged(z,w). Taking norms, we see that N(d)N (k) = N(ged(z, w).

But as both d and ged(z,w) are greatest common divisors, we must have
that N(d) = N(ged(z,w)). So N(k) = 1. The only Gaussian integers with
norm one are +1, 44, so we have that du = ged(z,w) where u is one of the
four Gaussian units, +1, +1.

Conversely, it’s clear that the four numbers + ged(z, w), +iged(z, w) are
all greatest common divisors. ([
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Now that we have the Euclidean Algorithm, we can go towards unique
factorization in Z[i]. Let g denote a greatest common divisor of z and
w. Reverse substitution in the Euclidean Algorithm shows that we can find
Gaussian integer solutions x, y to the (complex) linear Diophantine equation

Zr +wy =g.
Let’s see an example.

Example. Consider 32 + 9i and 4 + 11i. The Euclidean Algorithm looks
like
32+ 9i = (4+ 114)(2 — 24) + 2 — 54,
4411 = (2= 5i)(—=2+14) + 3 — i,
2-5i=(3—i)(1—1)—i,
3—i=—i(l1+3i)+0.
So we know that —i is a greatest common divisor of 3249t and 4+ 114, and

so we know that 32 + 97 and 4 + 11i are relatively prime. Let us try to find
a solution to the Diophantine equation

(324 9i) + y(4 + 114) = 1.
Performing reverse substition, we see that
—i=(2-5i)—(3—14)(1—1)

(2—=51) —(4+11i — (2 —50)(—2+14))(1 — 1)

(2—=51)—(4+11)(1—4)+ (2—5i)(—2+1)(1 —19)
= (2—59)(31) — (4 + 114)(1 — 9)

=(3249 — (44 119)(2 — 20))(3i) — (4 + 11i)(1 — )

= (32499)3i — (4 + 114)(2 — 20)(37) — (4 + 1149)(1 —7)

= (324 99)3i — (4 + 114)(7 + 5i).
Multiplying this through by i, we have that
= (3249i)(—=3) + (4 + 114)(5 — 79).

So one solution is (x,y) = (—3,5 — Ti).

Although this looks more complicated, the process is the same as in the
case over the reqular integers. The apparent higher difficulty comes mostly
from our lack of familiarity with basic arithmetic in Z[i].

The rest of the argument is now exactly as in the integers.

Theorem 9. Suppose that z,w are relatively prime, and that z | wv. Then
z | v.

Proof. This is left as an exercise (and will appear on the next midterm in
some form — cheers to you if you've read this far in these notes). But it’s
now the almost the same as in the regular integers. O
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Theorem 10. Let z be a Gaussian integer with N(z) > 1. Then z can be
written uniquely as a product of Gaussian primes, up to multiplication by
one of the Gaussian units £1, +i.

Proof. We only sketch part of the proof. There are multiple ways of doing
this, but we present the one most similar to what we’ve done for the integers.
If there are Gaussian integers without unique factorization, then there are
some (maybe they tie) with minimal norm. So let z be a Gaussian integer
of minimal norm without unique factorization. Then we can write

pPip2--"Pk = 2 =4q192" "4y,

where the p and ¢ are all primes. As p1 | 2 = q1g2 - - - @z, we know that p;
divides one of the g (by Theorem 9), and so (up to units) we can say that p; is
one of the ¢ primes. We can divide each side by p; and we get two supposedly
different factorizations of a Gaussian integer of norm N(z)/N(p1) < N(z),
which is less than the least norm of an integer without unique factorization
(by what we supposed). This is a contradiction, and we can conclude that
there are no Gaussian integers without unique factorization. O

If this seems unclear, I recommend reviewing this proof and the proof
of unique factroziation for the regular integers. I should also mention that
one can modify the proof of unique factorization for Z as given in the course
textbook as well (since it is a bit different than what we have done). Further,
the course textbook does proof of unique factorization for Z[i] in Chapter
36, which is very similar to the proof sketched above (although the proof of
Theorem 9 is very different.)

3. AN APPLICATION TO y? = 2 — 1.

We now consider the nonlinear Diophantine equation % = 23 — 1, where
x,y are in Z. This is hard to solve over the integers, but by going up to Z|i],
we can determine all solutions.

In Z[i], we can rewrite

(1) v 1= (y+i)y—i) =2’

We claim that y + ¢ and y — 7 are relatively prime. To see this, suppose
that d is a common divisor of y +i and y —i. Then d | (y+1i) — (y —1i) = 2i.
It happens to be that 2i = (1 + ¢)2, and that (1 +4) is prime. To see this,
we show the following.

Lemma 11. Suppose z is a Gaussian integer, and N(z) = p is a regular
prime. Then z is a Gaussian prime.

Proof. Suppose that z factors nontrivially as z = ab. Then taking norms,
N(z) = N(a)N(b), and so we get a nontrivial factorization of N(z). When
N(z) is a prime, then there are no nontrivial factorizations of N(z), and so
z must have no nontrivial factorization. ]
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As N(1+1i) = 2, which is a prime, we see that (14 :) is a Gaussian prime.
So d | (1 4 4)?, which means that d is either 1, (1 + i), or (1 +4)? (up to
multiplication by a Gaussian unit).

Suppose we are in the case of the latter two, so that (1 +4) | d. Then as
d | (y + i), we know that (1+4) | 3. Taking norms, we have that 2 | z°.

By unique factorization in Z, we know that 2 | 2. This means that 4 | z2,
which allows us to conclude that 22 = 0 (mod 4). Going back to the original
equation y% + 1 = 23, we see that y?> + 1 = 0 (mod 4), which means that
y? =3 (mod 4). A quick check shows that y?> = 3 (mod 4) has no solutions
y in Z/AZ.

So we rule out the case then (1 + i) | d, and we are left with d being a
unit. This es exactly the case that y + ¢ and y — ¢ are relatively prime.

Recall that (y+i)(y —i) = 23. As y+i and y —i are relatively prime and
their product is a cube, by unique factorization in Z[i] we know that y + @
and y —i much each be Gaussian cubes. Then we can write y+i = (m+ni)>
for some Gaussian integer m + ni. Expanding, we see that

y+i=m?®—3mn®+i(3m?*n —n?).
Equating real and imaginary parts, we have that
y = m(m? — 3n?)
1 = n(3m* —n?).

This second line shows that n | 1. As n is a regular integer, we see that
n=1or —1.

If n = 1, then that line becomes 1 = (3m? — 1), or after rearranging
2 = 3m?2. This has no solutions.

If n = —1, then that line becomes 1 = —(3m? — 1), or after rearranging
0 = 3m?2. This has the solution m = 0, so that y +i = (—4)® = 4, which
means that y = 0. Then from y? + 1 = 23, we see that z = 1.

And so the only solution is (z,y) = (1,0), and there are no other solutions.

4. OTHER RINGS

The Gaussian integers have many of the same properties as the regular
integers, even though there are some differences. We could go further. For
example, we might consider the following integer-like sets,

Z(Vd) = {a+bVd : a,b € Z}.

One can add, subtract, and multiply these together in similar ways to how
we can add, subtract, and multiply together integers, or Gaussian integers.
We might ask what properties these other integer-like sets have. For
instance, do they have unique factorization?
More generally, there is a better name than “integer-like set” for this sort
of construction.
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Suppose R is a collection of elements, and it makes sense to add, subtract,
and multiply these elements together. Further, we want addition and mul-
tiplication to behave similarly to how they behave for the regular integers.
In particular, if r and s are elements in R, then we want r + s = s+ to be
in R; we want something that behaves like 0 in the sense that r 4+ 0 = r; for
each r, want another element —r so that r + (—r) = 0; we want - s = s -7
we want something that behaves like 1 in the sense that r - 1 = r for all
r # 0; and we want r(s; + s2) = rs1 + rsa. Such a collection is called a
ring. (More completely, this is called a commutative unital ring, but that’s
not important.)

It is not important that you explicitly remember exactly what the defini-
tion of a ring is. The idea is that there is a name for things that are “integer-
like” and that we might wonder what properties we have been thinking of
as properties of the integers are actually properties of rings.

As a total aside: there are very many more rings too, things that look
much more different than the integers. This is one of the fundamental ques-
tions that leads to the area of mathematics called Abstract Algebra. With
an understanding of abstract algebra, one could then focus on these gen-
eral number theoretic problems in an area of math called Algebraic Number
Theory.

5. THE RINGS Z[V/d]

We can describe some of the specific properties of Z[\/&], and suggest
how some of the ideas we’ve been considering do (or don’t) generalize. For a
general element n = a + bv/d, we can define the conjugate m = a — bv/d and
the norm N(n) = n -7 = a® — db*>. We call those elements u with N(u) = 1
the units in Z[\/d].

Some of the definitions we’ve been using turn out to not generalize so
easily, or in quite the ways we expect. If n doesn’t have a nontrivial facto-
riation (meaning that we cannot write n = ab with N(a), N(b) # 1), then
we call n an irreducible. In the cases of Z and Z[i|, we would have called
these elements prime.

In general, we call a number p in Zv/d a prime if p has the property that
p | ab means that p | a or p | b. Of course, in the cases of Z and Z[i], we
showed that irreducibles are primes. But it turns out that this is not usually
the case.

Let us look at Z+/—5 for a moment. In particular, we can write 6 in two
ways as

6=2-3=(1++v-5)(1—+-5).

Although it’s a bit challenging to show, these are the only two fundamentally
different factorizations of 6 in Z[v/—5]. One can show (it’s not very hard,
but it’s not particularly illuminating to do here) that neither 2 or 3 divides
(1++/=5) or (1 —y/=5) (and vice versa), which means that none of these
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four numbers are primes in our more general definition. One can also show
that all four numbers are irreducible.

What does this mean? This means that 6 can be factored into irreducibles
in fundamentally different ways, and that Z[v/—5] does not have unique
factorization.

It’s a good thought exercise to think about what is really different between
Z[v/—5] and Z. At the beginning of this course, it seemed extremely obvious
that Z had unique factorization. But in hindsight, is it really so obvious?

Understanding when there is and is not unique factorization in Z[v/d] is
something that people are still trying to understand today. The fact is that
we don’t know! In particular, we really don’t know very much when d is
positive.

One reason why can be seen in Z[v2]. If n = a + by/2, then N(n) =
a®? —2b%. A very basic question that we can ask is what are the units? That
is, which n have N(n) =17

Here, that means trying to solve the equation

(2) a® —20% =1.

We have seen this equation a few times before. On the second homework
assignment, I asked you to show that there were infinitely many solutions
to this equation by finding lines and intersecting them with hyperbolas. We
began to investigate this Diophantine equation because each solution leads
to another square-triangular number.

So there are infinitely many units in Z[v/2]. This is strange! For instance,
3 + 2v/2 is a unit, which means that it behaves just like +1 in Z, or like
+1, 44 in Z[i]. Very often, the statements we’ve been looking at and proving
are true “up to multiplication by units.” Since there are infinitely many in
Z[/2], it can mean that it’s annoying to determine even if two numbers are
actually the same up to multiplication by units.

As you look further, there are many more strange and interesting be-
haviours. It is really interesting to see what properties are very general, and
what properties vary a lot. It is also interesting to see the different ways in
which properties we’re used to, like unique factorization, can fail.

For instance, we have seen that Z[/—5] does not have unique factoriza-
tion. We showed this by seeing that 6 factors in two fundamentally different
ways. In fact, some numbers in Z[/=5] do factor uniquely, and others do
not. But if one does not, then it factors in at most two fundamentally
different ways.

In other rings, you can have numbers which factor in more fundamentally
different ways. The actual behaviour here is also really poorly understood,
and there are mathematicians who are actively pursuing these topics.

It’s a very large playground out there.
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