Response to Bnelol2

ANSWERED BY MIXEDMATH

> David Lowry-Duda

Brown University Mathematics http://davidlowryduda.com

bnelo12 writes (slightly paraphrased)
Can you explain exactly how $1+2+3+4+\ldots=-\frac{1}{12}$ in the context of the Riemann ζ function?
We are going to approach this problem through a related problem that is easier to understand at first. Many are familiar with summing geometric series

$$
g(r)=1+r+r^{2}+r^{3}+\ldots=\frac{1}{1-r},
$$

which makes sense as long as $|r|<1$. But if you're not, let's see how we do that. Let $S(n)$ denote the sum of the terms up to r^{n}, so that

$$
S(n)=1+r+r^{2}+\ldots+r^{n} .
$$

Then for a finite $n, S(n)$ makes complete sense. It's just a sum of a few numbers. What if we multiply $S(n)$ by r ? Then we get

$$
r S(n)=r+r^{2}+\ldots+r^{n}+r^{n+1} .
$$

Notice how similar this is to $S(n)$. It's very similar, but missing the first term and containing an extra last term. If we subtract them, we get

$$
S(n)-r S(n)=1-r^{n+1}
$$

which is a very simple expression. But we can factor out the $S(n)$ on the left and solve for it. In total, we get

$$
\begin{equation*}
S(n)=\frac{1-r^{n+1}}{1-r} \tag{1}
\end{equation*}
$$

This works for any natural number n. What if we let n get arbitrarily large? Then if $|r|<1$, then $|r|^{n+1} \rightarrow 0$, and so we get that the sum of the geometric series is

$$
g(r)=1+r+r^{2}+r^{3}+\ldots=\frac{1}{1-r} .
$$

But this looks like it makes sense for almost any r, in that we can plug in any value for r that we want on the right and get a number, unless $r=1$. In this sense, we might say that $\frac{1}{1-r}$ extends the geometric series $g(r)$, in that whenever $|r|<1$, the geometric series $g(r)$ agrees with this function. But this function makes sense in a larger domain then $g(r)$.

People find it convenient to abuse notation slightly and call the new function $\frac{1}{1-r}=g(r)$, (i.e. use the same notation for the extension) because any time you might want to plug in r when $|r|<1$, you still get the same value. But really, it's not true that $\frac{1}{1-r}=g(r)$, since the domain on the left is bigger than the domain on the right. This can be confusing. It's things like this that cause people to say that

$$
1+2+4+8+16+\ldots=\frac{1}{1-2}=-1
$$

simply because $g(2)=-1$. This is conflating two different ideas together. What this means is that the function that extends the geometric series takes the value -1 when $r=2$. But this has nothing to do with actually summing up the 2 powers at all.

So it is with the ζ function. Even though the ζ function only makes sense at first when $\operatorname{Re}(s)>1$, people have extended it for almost all s in the complex plane. It just so happens that the great functional equation for the Riemann ζ function that relates the right and left half planes (across the line $\operatorname{Re}(s)=\frac{1}{2}$) is

$$
\begin{equation*}
\pi^{\frac{-s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{\frac{s-1}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s), \tag{2}
\end{equation*}
$$

where Γ is the gamma function, a sort of generalization of the factorial function. If we solve for $\zeta(1-s)$, then we get

$$
\zeta(1-s)=\frac{\pi^{\frac{-s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)}{\pi^{\frac{s-1}{2}} \Gamma\left(\frac{1-s}{2}\right)}
$$

If we stick in $s=2$, we get

$$
\zeta(-1)=\frac{\pi^{-1} \Gamma(1) \zeta(2)}{\pi^{\frac{-1}{2}} \Gamma\left(\frac{-1}{2}\right)}
$$

We happen to know that $\zeta(2)=\frac{\pi^{2}}{6}$ (this is called Basel's problem) and that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. We also happen to know that in general, $\Gamma(t+1)=$ $t \Gamma(t)$ (it is partially in this sense that the Γ function generalizes the factorial function), so that $\Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \Gamma\left(\frac{-1}{2}\right)$, or rather that $\Gamma\left(\frac{-1}{2}\right)=$ $-2 \sqrt{\pi}$. Finally, $\Gamma(1)=1$ (on integers, it agrees with the one-lower factorial).

Putting these together, we get that

$$
\zeta(-1)=\frac{\pi^{2} / 6}{-2 \pi^{2}}=\frac{-1}{12}
$$

which is what we wanted to show. \diamond

The information I quoted about the Gamma function and the zeta function's functional equation can be found on Wikipedia or any introductory book on analytic number theory. Evaluating $\zeta(2)$ is a classic problem that has been in many ways, but is most often taught in a first course on complex analysis or as a clever iterated integral problem (you can prove it with Fubini's theorem). Evaluating $\Gamma\left(\frac{1}{2}\right)$ is rarely done and is sort of a trick, usually done with Fourier analysis.

This writing (and several others) can be found on my blog at davidlowryduda.com.

