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This is a collection of problems, sometimes with hints, aimed at illustrat-
ing concepts that we didn’t cover in class. Some are easy, others are hard. I
had promised some about Cardano’s Formula, but there is a bit more here.

1. Exploring Polynomials

In this section, there are a collection of exercises that explore some of the
ideas behind polynomials.

Exercise 1.1. When we multiply two polynomials together, we can use
the method of detached coefficients. For example, if we wanted to multiply
together the polynomials x3 + 3x2 − 2x + 4 and 2x2 + x + 6, we can do the
following:

1 3 −2 4
2 1 6

6 18 −12 24
1 3 −2 4

2 6 −4 8
2 7 5 24 −8 24

Justify this algorithm, and learn how to read off the product of the two
polynomials from it.

Exercise 1.2. (1) Use the method described above to find the product
of 4t3 + 2t2 + 7t + 1 and 2t2 + t + 6.

(2) Evaluate each of these polynomials and their product at t = 10.
(3) Compare this multiplication with the pencil-and-paper long multi-

plication for the product of 4271 · 216.
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Exercise 1.3. Suppose p(x) and q(x) are two polynomials, and let deg(p(x))
mean ”the degree of the polynomial p(x).” What can you say about deg(p(x)+
q(x))? [It’s not always true that it’s equal to the maximum of the two. When
is this not the case? ] What can you say about deg(pq(x))?

Exercise 1.4. How is deg((p ◦ q)(x)) related to deg((g ◦ p)(x))?

Exercise 1.5. Is it possible to find a polynomial, apart from the constant
0 polynomial, that is 0 everywhere? That is, can one find a polynomial p(x)
such that p(x) = 0 for all x? Try to justify your answer. [This is not easy,
although I bet you’ll get the right answer. Remember how the degree and the
number of roots are related? ].

Exercise 1.6. This is a cool exercise. Choose any quadratic polynomial
p(x) = ax2 + bx + c. Then compute p(1) + p(4) + p(6) + p(7) on one hand,
and p(2) + p(3) + p(5) + p(8) on the other. What do you notice about the
two sums? It turns out that this problem has some really interesting large
generalizations. It is possible to find a split of the numbers from 1 to 16
such that this also works for any cubic.

2. Quadratics

Exercise 2.1. Remind yourself of the proof of the quadratic formula. In
particular, we learned that if p(x) = ax2 + bx + c, then by completing the

square we can rewrite p(x) as p(x) = a

(
x +

b

2a

)2

− 1

4a
(b2 − 4ac). Try to

organize this into the quadratic formula you know.

Exercise 2.2. The standard quadratic formula says that the roots of the

polynomial p(x) = ax2 + bx+ c are given by x =
−b±

√
b2 − 4ac

2a
. The part

under the radical, D = b2−4ac, is called the discriminant. What happens
if D > 0? If D = 0? If D < 0? Come up with an example of each case. [In
particular, note how many real solutions there are.]

Exercise 2.3. If a, b are two numbers, there are various types of thing we
can mean when we mean ’average.’ Often, we mean their arithmetic average:
a + b

2
. But there is another common type of average called a geometric

average:
√
ab. If you’ve never seen this before, I recommend looking it up

on wikipedia. In this question, we show that the arithmetic mean of two
numbers is always at least as large as the geometric mean. Use the fact that
both of the zeroes of the quadratic (x−

√
a)(x−

√
b) are real, and knowledge

of the discriminant from above, to show that
a + b

2
≥
√
ab.

Exercise 2.4. This is significantly harder than the others so far. In this
problem, we explain a derivation for one of the most important and powerful
basic inequalities out there. Recall the summation notation:

∑
.
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(1) Suppose that ak, bk are nonnegative real numbers. Then the function
p(t) =

∑n
k=1(akt+ bk)2 is a quadratic polynomial in t. Explain why

the discriminant is nonpositive.
(2) Use this to show the Cauchy-Schwarz Inequality (perhaps just do

the case when n = 2, so that you only have a1, b1, a2, b2 to worry
about):

n∑
k=1

akbk ≤

√√√√ n∑
k=1

a2k

√√√√ n∑
k=1

b2k

3. The Arithmetic of Complex Numbers

Exercise 3.1. Let z = x + iy, w = u + iv, p = s + it be three complex
numbers. Recall that the conjugate z = x− iy. Show the following:

(1) (zw)p = z(wp) [If you just sort of do it, it will work out ]
(2) zw = wz
(3) z + w = z + w
(4) zw = zw

(5) z2 = z2 [This could be done for free from the last bit, for example]

Exercise 3.2. In class, we have mentioned the Fundamental Theorem of
Algebra: every polynomial can be factored into a product of linear factors,
although complex numbers might arise. Afterwards, I said (without proof
or justification) that if r = x + iy is a complex root of a polynomial with
real coefficients, then r is also a root. That is, I said that roots appear in
conjugate pairs. Let’s see why this is: Suppose p(t) is a polynomial with

real coefficients. Show that for any complex number z + a+ bi, p(z) = p(z).
Then reason that if r is a complex zero of p(t), then r is also a root by

considering p(r).

4. Toward’s Cardano’s Formula

We now try to motivate Cardano’s Formula a bit.

Exercise 4.1. Consider the cubic equation p(x) = x3−12x2+29x−18 = 0.
Our first goal is to get rid of the ’quadratic term.’ It turns out that it’s always
possible to shift x to the left or right to remove the quadratic term. Show
here, for instance, that p(t + 4) converts this equation to t3 − 19t− 30 = 0.

Exercise 4.2. We now follow the general method of Cardano on f(t) =
t3 − 19t− 30.

(1) Set t = u+v and get the equation u3+v3+(3uv−19)(u+v)−30 = 0.
(2) Argue that if we can find a u, v such that u3 + v3− 30 = 0 and such

that 3uv = 19, then the resulting t = u + v will be a solution to our
cubic.
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(3) Solving for v in the second equation and substituting into the first,
show that u3 is a root of the quadratic equation x2−19x+303/27 = 0.
Solve for u. [There might be a few times where you might worry about
taking either the positive or negative square root, etc. Unfortunately,
not every combination works. But try a few times, and it should work
out.]

(4) Then solve for v, so that you find a root u + v.
(5) Completely factor f(t). You can check your answer with the Rational

Root test, as this actually has a rational root.
(6) Use this factorization to factor p(x) from the last exercise.

Exercise 4.3. This is actually a collection of statements, not quite an ex-
ercise. If f(x) = x3 + px + q, then Cardano’s method will always find a
solution. But just as the discriminant of a quadratic tells the character of
the solutions, there is a cubic discriminant as well. It is D = 27q2 + 4p3. If
D > 0, then the cubic has one real root and two imaginary roots. If D = 0,
then the cubic has a double root. If D < 0, then the cubic has three distinct
real roots. Discriminants are really useful.

Exercise 4.4. By means of a transformation, get rid of the quadratic term
in the equation x3 − 15x2 − 33x + 847. Then verify that its discriminant is
0, so that there is a repeated root.

Exercise 4.5. The Quartic. This is a brief overview of Descartes’ Method
to solve the quartic. This is the same Descartes who unified algebra and
geometry with the Cartesian plane, and the same Descarte as ”Cogito ergo
sum” - ”I think, therefore I am.”

(1) Any quartic can be rewritten to get rid of the cubic term.
(2) If p(t) = t4 + pt2 + qt + r, then p(t) can always be written as the

product of two factors: p(t) = (t2 +ut+v)(t2−ut+w) where u, v, w
satisfy the simultaneous system

v + w − u2 = pu(w − v) = qvw = r

This is much harder to see, so we don’t go into it.
(3) The trick here is to eliminate v, w in the above system to get a cubic

equation in u2. Now that we know how to solve cubics, this leads to
one root of the quartic. But again, this leaves a cubic, so one could
conceivably solve the resulting cubic as well.

Exercise 4.6. This is another doable exercise. Sometimes, other (slick)
methods can be used to solve things like the quartic or cubic. Some of these
are interesting in their own right, and this is one of them. Consider the
polynomial p(x) = 2x4 + 5x3 + x2 + 5x + 2 = 0, and notice the symmetry
of the coefficients (which is when this method works). Show that writing
x = t + 1

t leads to the (easily-solved) equation 2t2 + 5t− 3 = 0. Solve this,
and use the result to solve for the original x.
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Exercise 4.7. To check the above work, show that the left side of p(x)
(above) can be written as the product of the two quadratic polynomials
that arise in solving for x once the two values of t are known.

Exercise 4.8. Polynomials with the type of coefficient symmetry as in the
last two exercises are known as Reciprocal Polynomials. That is to say
that if p(x) = axn+bxn−1+cxn−2+· · ·+cx2+bx+a, then p(x) is reciprocal.
Argue that if r is a root of a reciprocal polynomial, then so is 1

r (which is
how it got its name).

There we have it.
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