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The nature of math research
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It’s said that math is the purest of the sciences — that it is pure

abstraction. Does this mean that math research is entirely different than

other research in the sciences?
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Actually doing math involves lots of experimentation, often in the form of

examples and counterexamples. One of the most powerful tools for

sharpening intuition is to curate a collection of particularly good

examples.

The prototypical path in research is to

1. ask a question

2. generate data

3. formulate conjectures (and maybe other questions)

4. test these conjectures

5. try to prove the conjecture (likely prompting more questions)

This might feel familiar! This process is often the same when writing

proofs for a class.
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Notable examples

Question (Basel Problem)

What is
∑

n≥1

1

n2
= 1 +

1

4
+

1

9
+ · · · ?

Question (Prime Number Count)

How many primes are there up to N?
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Basel Problem: computation as justification

This was asked by Mengoli in 1650 and answered by Euler in 1734. Euler

asked whether power series (infinite-degree polynomials) should factor

uniquely as a product over their roots. If they did, then perhaps

sin x

x
=

(

1−
x

π

)(

1 +
x

π

)(

1−
x

2π

)(

1 +
x

2π

)

· · · (1)

On the one hand, sin x
x

= 1− x2

6 + · · · by Taylor series. On the other

hand, the collected coefficient of x2 from the right of (1) is 1
π2

∑

1
n2
.

This suggests that
∑

n≥1

1

n2
=

π2

6
.

Euler then computed the sum to several digits (using what we now call

Euler-Maclaurin summation), and π2/6 to several digits, and saw that

they agreed. This was good enough for him!

(About 100 years later, Weierstrass proved that (1) is actually true).
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Prime number theorem: computation as conjecture

It’s not too hard to show that there are infinitely many primes, but how

many primes are there up to a fixed number N? How would you begin to

try to answer this question?

The resolution of this problem includes computational efforts by many,

performed over more than 100 years.

In 1777, Felkel published tables of factorizations of all numbers up to

408000 (and thus also a table of the primes). In 1783, Vega published

tables of computed logarithms.
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Tables

In 1797, Legendre examined

these tables (both, as how does

one compute logs?) and

conjectured that the number of

primes less than N (which we

denote by π(N)) is

approximately given by

π(N) ≈
N

a logN + b

for some constants a and b.

We can replicate some of his

thinking when we look at the

ratio of π(n)/(n/ log n), plotted

at right. (Visualization is itself

an important tool in research).
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Legendre later made the explicit conjecture that

π(N) ≈
N

logN − 1.08366
.

Dirichlet and Gauss made related conjectures in the early 1800s. Around

1850, Chebyshev considered the limit

lim
n→∞

π(n)

n/ log n
. (2)

He showed that if this limit exists, then it is equal to 1, and he gave

unconditional upper and lower bounds for the ratio.1

In 1859, Riemann presented his memoir (introducing the Riemann zeta

function ζ(s)), describing how to apply complex analysis and ζ(s) to

study π(N). Finally, in 1896, Hadamard and de la Vallée Poussin

completed (independent) proofs that (2) exists and equals 1.

1His proof is itself very computational! He had to find particular weights that

minimized a family of approximations.
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As we can see, research has been guided by computational

experimentation for hundreds of years.

But the nature of computation has recently changed. (For example, we

no longer need to consult tables of logarithms).
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Role of computers

Computers can generate a lot of data and can often be used to rapidly

test conjectures and ideas. Computer driven research began with the

dawn of computing, and entirely new areas of math have formed around

computer automation.

Sometimes, it is now possible to set up problems for exhaustive search

(and to make computers do the exhausting part).

10



Data and proof

Here is a pair of examples (which we’ll explain more in a moment).

Theorem

For all integer n ∈ Z≥0, we have that

n
∑

i=1

i3 =

(

n(n + 1)

2

)2

.

Proof: We verify this explicitly for n = 0, 1, 2, 3, 4. These cases prove the

theorem.

Theorem

For every triangle ABC, the angle bisectors intersect at one point.

Proof: We verify this explicitly for the 64 triangles for which

∠A = 10◦, . . . , 80◦ and ∠B = 10◦, . . . , 80◦. These cases prove the

theorem.
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What’s going on here? The idea is that with a bit of extra insight, we

can reduce proving a general result to a finite number of explicit

computations.

In the first example, the key insight is that
n

∑

j=1

jk is a degree k + 1

polynomial2 in n. The first proof then relies on the fact that a degree 4

polynomial is uniquely determined by 5 points.

In the second example, the key insight is the computation that

coordinates of pairs of angle bisectors are rational functions of degree

≤ 7 in tan(∠A/2) and tan(∠B/2), which are uniquely determined by 64

values.

2I encourage you to prove this if you haven’t seen it!
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How exhausting can it be?

• Bounded gaps between primes: There is a number d ≤ 246 such

that there are infinitely many primes of the form p, p + d .

Initially Yitang Zhang showed this with d ≤ 7 · 107. The Polymath8

project designed algorithms to find “weights” to reduce d ; the

weights are easily verified.

• Ternary Goldbach: Every odd integer n ≥ 5 can be written as the

sum of three primes.

Helfgott (with lots of computer power) showed that this is true for

all n ≥ 1027. Explicit verification for all numbers up to 1027

completes the proof; any individual decomposition can be verified.

• Four color theorem: No planar map requires more than 4 colors.

The proof involved reducing the problem to consider maps from a

finite set of types, from a finite set of configurations. Computers

verified each of these; it is impractical to human verify these

computations.
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My work as an experimental and

computational mathematician
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During grad school, I began to use computers as an experimental tool to

help guide my research. I was studying problems related to the Gauss

circle problem:

Question (Gauss circle problem)

How many integer points (n,m) ∈ Z2 are contained inside a circle of

radius R centered at the origin? Call this N(R).

In the 1790s, Gauss showed that N(R) = πR2 + O(R). And maybe he

thought that was as good as one could do? In the 1900s, Sierpiński

showed that actually the error term is at most O(R2/3) and

(computationally) suggested that it might be O(R1/2).
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I was studying these problems from the perspective of modular forms,

which are highly self-symmetric holomorphic complex functions with

many special properties.

Briefly but concretely, a modular form f is a complex-valued,

differentiable function on H = {x + iy : y > 0} that satisfies an infinite

family of symmetries of the shape

f

(

az + b

cz + d

)

= (cz + d)k f (z)

for a fixed k , and any choice of integers a, b, c , d such that the matrix
(

a b
c d

)

has determinant 1. Each modular form has a Fourier expansion of

the form

f (z) =
∑

n≥0

a(n)e2πinz ,

and “doesn’t grow too big” anywhere.
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There is a modular form (typically called θ2) whose properties include

data related to the Gauss circle problem. In particular,

θ2(z) = 1 +
∑

n≥1

r2(n)e
2πinz

where r2(n) is the number of ways of writing n as a sum of two squares.

We can show that

N2(R) =
∑

n≤R2

r2(n).

In order to recover estimates for N2(R) from θ2, one uses the associated

L-function

L(s, θ2) =
∑

n≥1

r2(n)

ns
.

(This L-function behaves in many ways like ζ(s)).
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I was working on relating modular properties of θ2 to estimates for the

Gauss circle problem (and related topics). Modular forms have beautiful

properties, but they can be challenging to reason about. To understand

which directions to investigate further, I began to perform numerical

experiments.

I used sage (also called sagemath), a free math computer algebra system

written largely by researchers and building on decades of established

research software.

For more sophisticated data associated to modular forms, I turned to the

L-function and Modular Form Database (LMFDB).
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In my field of analytic number theory, it is often possible to work really

hard with lots of technical effort to improve a result, but it’s also possible

to work really hard and prove nothing more. Initially I experimented to

determine areas which might yield to more scrutiny.

This led to my thesis, as well as [HKLDW18, HKLDW21] (and other

related papers included in the bibliography).

Experiments suggested that many of our results (particularly in the

Laplace transform aspect) were best possible — which led to [LD20a].

But it was also very clear that much of what we could prove was far from

the truth.3

It felt like the only place with information on these gaps was the

LMFDB, and I joined its development team.

3In these projects, this is related to understanding the distribution and behavior of

Maass forms, which I’m talking about tomorrow!

21



Background on the LMFDB and its purpose

That modular forms hold arithmetic data (in this case, about counting

lattice points in the Gauss circle problem) is not a coincidence. This is a

piece of a large family of ideas called the Langlands program.

Broadly speaking, the Langlands program suggests that arithmetic or

algebrogeometric objects are deeply connected to modular forms. For

example, the Q-Modularity Theorem asserts that every elliptic curve

defined over Q is related to a modular form, and was the final ingredient

in the proof of Fermat’s Last Theorem.

Langlands suggests that the Modularity Theorem should be true more

generally, for example with Q replaced by any number field. Most of

these generalizations remain unknown.

In many cases, we don’t even have explicit conjectures formed yet on

what to expect.
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Background on the LMFDB and its purpose

The heart of the Langlands program is the concept of the L-function.

The LMFDB seeks to describe relationships between L-functions,

modular forms, and algebrogeometric objects. This continues the

tradition of making tables to inspire others, and makes it available

electronically (LMFDB.org).4

For example, it includes information such as this portion of elliptic curve

data from the 1976 Antwerp IV tables.5

4If you want to see what’s up and coming, see beta.lmfdb.org for portions in trial.
5This part of the tables corresponds to the five elliptic curves at

https://www.lmfdb.org/EllipticCurve/Q/38/ and the four elliptic curves at

https://www.lmfdb.org/EllipticCurve/Q/39/.
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Background on the LMFDB and its purpose

The LMFDB isn’t so different from the log and prime tables of Felkel and

Vega. It is a huge collection of number theoretic and algebraic data that

can be used to formulate and test conjectures.

Systematic computation of elliptic curves and their L-functions led to the

formulation of the Sato–Tate conjecture, modularity conjecture, and the

Birch and Swinnerton-Dyer conjecture.

The frontiers of research are advancing: to more complicated curves of

higher genus, more general geometric surfaces, and modular forms of

higher degree. The LMFDB aims to provide data for new conjectures,

ideas, and theorem.

The LMFDB has been cited in nearly 500 papers, and we are continuing

to add and connect data.
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I went from doing experimental number theory to doing computational

number theory: I designed and implemented algorithms for rigorous

computation. A strong grasp of a subject is required to implement

efficient computation.

Deliberate computation leads to more understanding.

One of the first major projects I worked on with the LMFDB was to

explicitly compute and verify classical modular forms — and to identify

related algebraic objects.6

6This was a large effort by many people, described more in [BBB+22].
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Visualization

When viewing the database from the website, we want most objects to

have a “portrait”, ideally giving a meaningful mathematical description.

While computing modular forms, I began to think about how they should

be visualized.
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https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5408/2/a/a/

There are over 14 million other modular forms on the LMFDB.
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Aside on visualizing modular forms

For more on visualizing modular forms and complex function visualization

in general, see Visualizing Modular Forms, [LD22].

Much of the code I wrote to make the visualizations in the LMFDB is

available at [LD20b].

This complex visualization software will be included in the next release of

sage (sage9.6), available through complex plot.

29



I’m now working on developing methods of computing fundamental

objects related to modular forms called Maass forms, among other things.

My colleagues and collaborators are working on topics such as

• incorporating modular curves into the LMFDB,

• writing efficient p-adic software,

• computing half-integral weight modular forms,

• studying abelian surfaces,

and many more.

30



Science is what we understand well enough to explain to a computer.

Art is everything else we do. And over the last several years, an

important part of mathematics has been transformed from an Art to a

Science.

Science advances whenever an art becomes a science. And the state of

the Art advances too, because people always leap into new territory

once they have understood more about the old.

- Donald Knuth
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Conclusion

Computation and experimentation have been at the heart of research for

hundreds of years.

Those with interest and facility in both computation and fundamental

mathematics have an enhanced opportunity to prove theorems, develop

algorithms, explore and create guiding examples, collect data, and to

produce scholarly resources like the LMFDB that help the efforts of

others.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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