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large amount of data associated to Maass forms, but there remains a lot

to compute and a lot to prove.
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particular, I’ve been working with Andrew Booker (Bristol), Andrei

Seymour-Howell (Bristol), and Drew Sutherland (MIT) on computational

aspects, and Min Lee, Jonathan Bober, Andrei Seymour-Howell, and

Andrew Booker (all at Bristol) with theoretical aspects.

I should also note that I’ve had the benefit of several helpful
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Stefan Lemurell (Chalmers), Fredrik Strömberg (Nottingham), and the

rest of the Simons Collaboration.
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Motivation: why study Maass forms?

In his 1966 paper Can one hear the shape of a drum?, Mark Kac

considered whether the variety of tones and frequencies that can be

produced by a drum uniquely identifies the shape of that drum. These

tones and frequencies correspond to eigenvectors and eigenvalues of the

Laplacian (Helmholtz) equation on drumhead-space.

Maass forms are solutions to the Laplacian differential equation on

modular surfaces, as fundamental to modular forms as sound waves are

to music.

In practice, Maass forms extend the classical theory of Dirichlet series

with Euler products and the theory of classical holomorphic modular

forms. The spectral theoretic decomposition into Maass forms led to the

discovery of Selberg’s trace formula, which connects the spectrum to the

underlying geometry.

Personally, I frequently use spectral theory and poor understanding of

Maass forms is the most common major obstruction I face.
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For this talk, a Maass form will be a weight 0 Maass cuspform on a

congruence subgroup of SL(2,Z). Specifically, let Γ < SL(2,Z) be a

congruence subgroup. The modular surface X = Γ\H is a finite

non-compact surface. The Laplacian ∆ on this surface is

∆ = −y2(∂2/∂x2 + ∂2/∂y2).

We call a function f : H −→ C a Maass cuspform if

1. f is real analytic, f ∈ C∞(H),

2. f is an eigenfunction of the Laplacian, ∆f = λf ,

3. f is automorphic, f (γz) = f (z) for all γ ∈ Γ,

4. f is square integrable, f ∈ L2(X ), and

5. f vanishes at all the cusps of X .
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Selberg famously conjectured that (for congruence subgroups Γ) the

eigenvalue λ is either 0 or λ ≥ 1
4 . An eigenvalue λ ∈ (0, 1

4 ) would be

called exceptional, though we’ve never seen one.

This Selberg eigenvalue conjecture (SEC) is analogous to the

Ramanujan–Petersson Conjecture (RPC). We describe this now.
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Given a classical (weight k Hecke) holomorphic cusp form

g(z) =
∑

n≥1

a(n)n
k−1
2 e2πinz ,

one can associate an L-function

L(s, g) =
∑

n≥1

a(n)

ns
=

∏

p

Lp(s),

where Lp(s) is (generically) of the form

Lp(s) = (1− βp,1p
−s)−1(1− βp,2p

−s)−1.

The RPC asserts that |βp,j | = 1, or equivalently that logp|βp,j | = 0.

For holomorphic cusp forms, the RPC is known and follows from

Deligne’s celebrated proof [Del71].
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To each Maass form, there is also an associated L-function. In its

completed form, the L-function associated to a Maass form f has the

shape

Λ(s, f ) = L∞(s)
∏

p

Lp(s),

where (for generic p)

Lp(s) = (1− αp,1p
−s)−1(1− αp,2p

−s)−1

L∞(s) = ΓR(s − µ∞,1)ΓR(s − µ∞,2).

Here, L∞(s) is the “factor at ∞” and consists of a pair of gamma

functions ΓR(s) := π−s/2Γ(s/2).

The parameters µ∞,j are closely related to the eigenvalues, and SEC

states that Reµ∞,j = 0 while RPC states that logp|αp,j | = 0.

The best progress towards these conjectures for Maass forms are due to

Kim and Sarnak, who showed that |Reα∞,j | and
∣∣ logp|αp,j |

∣∣ are bounded

above by 7
64 [KS03].
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Finally, each function g ∈ L2(Γ\H) has a spectral expansion of the shape

g(z) =
∑

f Maass cuspform

⟨g , f ⟩f (z)

+
∑

Eisenstein

∫
⟨g ,E (·, u)⟩E (z , u)du

+ (a constant).

A common hammer in my tool belt is to average over a family of

modular forms, represent everything in terms of the spectral

decomposition, and roll up my sleeves and do complex analysis on what

remains. The Maass forms that appear in these expansions are typically

the barrier to better results.

8



Maass forms in the LMFDB

The L-function and modular form database (https://LMFDB.org) is an

online database of L-functions, modular forms, abelian varieties, and their

relationships.

There is currently heuristic data for nearly 15000 Maass forms in the

LMFDB, available through the portal

https://www.lmfdb.org/ModularForm/GL2/Q/Maass/.

I’m working on computing more data and making these computations

rigorous.
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Methods for the computation of Maass forms have been considered and

developed by several authors since the 1970s. Today, I’ll describe my

preferred method (for GL(2) type Maass forms): Hejhal’s algorithm.

In my experience, Hejhal’s algorithm is faster and more versatile

compared to earlier methods. On the other hand, Hejhal’s algorithm is

not rigorous (although in practice it always produces reliable results).

We’ll return to the topic of rigorous evaluation later.

The algorithm that Hejhal described apply for the computation of Maass

forms for cofinite Fuchsian groups Γ such that Γ\H has exactly one cusp,

but I’ll also describe the necessary adjustments for when Γ\H has

multiple cusps, as is the case for general congruence subgroups Γ.
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Maass form Fourier expansion

It is easiest to first describe using Hejhal’s algorithm to compute a known

Maass newform. Let us fix a Maass form f with eigenvalue λ = 1
4 + R2.

Then f has a Fourier expansion

f (z) =
∑

n ̸=0

c(n)
√
y
WiR(2π|n|y)√

n
e(nx). (1)

Here and later, we use the notation e(nx) = e2πinx and

WiR(u) = eπR/2
√
uKiR(u), where Kα(u) is the modified K -Bessel

function of the second kind.

In this normalization, WiR(u) is an oscillating function of u for

0 < u ≲ R with amplitude roughly of size 1, and then it decays

exponentially for u ≳ R .

In terms of (1), we interpret our goal of computing a Maass form to

mean to find the eigenvalue parameter R and the coefficients c(n).
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The coefficients c(n) satisfy the trivial Hecke bound c(n) = O(
√
n) (in

fact, much better bounds are known). We can further assume that

c(1) = 1. Let us fix a desired error bound 10−D . Then there is a

decreasing function M(y) = M(y ,R) such that

f (x + iy) =
∑

|n|≤M(y)

c(n)
√
y
WiR(2π|n|y)√

n
e(nx) + [[10−D ]],

(where we use [[10−D ]] to mean a quantity of absolute value strictly less

than 10−D).

Thus we can view f (x + iy) as a finite Fourier series in x up to a small,

controlled error.
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f (x + iy) =
∑

|n|≤M(y)

c(n)
√
y
WiR(2π|n|y)√

n
e(nx) + [[10−D ]].

Fix a set of equally spaced points along a horocycle

{zm = xm + iY : xm =
1

2Q
(m − 1

2 ), 1− Q ≤ m ≤ Q}

(with Q > M(Y )). If we think of evaluating f at these points, we are

almost performing a discrete Fourier transform. Inverting this transform,

we see that

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

f (zm)e(−nxm) + [[10−D ]].

For fixed R and Y , we can vary n to get essentially a linear system in the

coefficients c(n) — but this system is currently a tautology.
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We make this system non-tautological by using the automorphy of f ,

that f (γz) = z for all γ ∈ Γ. To accomplish this, for the points

zm = xm + iY in our horocycle, we choose Y small enough so that part

of the horocycle will be outside a fixed fundamental domain for Γ\H.

Then we pullback each zm to a point z∗m in the fundamental domain. The

result is that

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

f (zm)e(−nxm) + [[10−D ]].

becomes

c(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

f (z∗m)e(−nxm) + [[10−D ]].

If instead of a congruence subgroup, we were considering SL(2,Z)\H, we

would be done. We could expand each f (z∗m) in its own (essentially

finite) Fourier series, repeat for several n, and get a linear system with

unknowns c(n). This is the classical algorithm of Hejhal.
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Expansions at all the cusps

But when Γ\H has multiple cusps, the resulting linear system is typically

very poorly-conditioned. Heuristically this is because several points

zm = xm + iY might still be in the fundamental domain, and thus

f (zm) = f (z∗m) for these points — the system is insufficiently mixed by

the modularity.

To resolve this, we work not just with the Fourier expansion of f at ∞.

We instead work simultaneously with the Fourier expansions fℓ at each

cusp ℓ. That is, in terms of the Fourier expansions fℓ(z) = f (σℓz), where

σℓ∞ = ℓ is a cusp normalization map.

For each point z∗ in the fundamental domain, we identify the nearest

cusp ℓ = ℓ(z∗). (By nearest, we mean the cusp with respect to which z∗

has the greatest height). Then we represent the value f (z∗) in terms of

the Fourier expansion fℓ.
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(This is the lots-of-bookkeeping aspect of the approach). In order to set

up the extended system, we must enlarge our linear system to include

horocycles associated to the expansion at each cusp and solve for all

expansions simultaneously. For each cusp j , we have an expansion

fj(z) =
∑

n ̸=0

cj(n)
√
y
WiR(2π|n|y)√

n
e(nx)

and we can set up the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

fj(zm)e(−nxm) + [[10−D ]]

as before.
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We now have the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

fj(zm)e(−nxm) + [[10−D ]].

Let zmj = σjzm, so that fj(zm) = f (zmj), and let z∗mj be the pullback of

zmj to the fundamental domain, expressed in coordinates of the nearest

cusp ℓ. Automorphy implies that f (zmj) = fℓ(z
∗
mj), and in total

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

fℓ(z
∗
mj)e(−nxm) + [[10−D ]].
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Lemma
It is possible to choose Y small enough such that z∗mj ̸= zmj for all j and

m. Further, the imaginary parts of each resulting z∗mj are bounded below

by a computable constant Y0 (which depends on the level of the

congruence subgroup).

It is the nontrivial mixing coming from fj(zm) and fℓ(z
∗
mj) that gives a

non-tautological system, allowing us to solve for the Fourier coefficients

in the linear system.
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Solving for the coefficients

Summarizing so far: given an input eigenvalue λ = 1
4 +R2, we can set up

the system

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

1

2Q

Q∑

1−Q=m

fℓ(z
∗
mj)e(−nxm) + [[10−D ]].

If we choose the Y in the horocycles as in the Lemma, then

Im(z∗mj) > Y0 for all m and j , so we can truncate each Fourier series fℓ on

the right at the same point M0 = M(Y0) while guaranteeing a uniform

error bound. Expanding each finite Fourier series and collecting

coefficients, we get that

cj(n)
√
Y
WiR(2π|n|Y )√

n
=

∑

cusps ℓ

∑

1≤|k|≤M0

cj(k)Vnkjℓ + 2[[10−D ]]

for complicated-but-computable coefficients Vnkjℓ (that are just

complicated combinations of K -Bessel functions and exponentials).

Considering this for each |n| ≤ M0 gives a linear system that can be

solved.
20



Structurally, we have constructed a homogeneous linear system V c⃗ = 0

for a computable matrix V = V (R ,Y ) consisting mostly of linear

combinations of Bessel functions and an unknown vector of coefficients c⃗ .

We can use the assumption c(1) = 1 to de-homogenize the linear system

and to facilitate solving for the coefficients.

It should be noted that a priori, it is not obvious that the resulting linear

system will be well-conditioned. This would be a necessary ingredient to

conclude that this algorithm would always succeed, but this is unknown.

However, in my experiments it seems that whenever we choose Y small

enough so that zmj ̸= z∗mj for all m and j , the resulting system is solvable

and gives approximately D correct digits of accuracy for the coefficients.
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Dimension reduction

There are frequently relations between the cusps that allow one to reduce

the dimension of the linear system. In particular, there are

Hecke-operator type symmetries (Fricke involutions) that connect Fourier

expansions at cusps.

I’ll also remark that all the work here carries through even when there is

a nontrivial nebentypus, except that one must track the character and

how it carries through the cusp-normalizing maps σℓ. (This is simply

additional bookwork).
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We have demonstrated that we can heuristically determine a Maass form

with a known eigenvalue by constructing a homogeneous linear system

V c⃗ = 0.

To make this rigorous, we need some way to determine the eigenvalue R ,

and we need some way to verify that our claimed Maass form is close to

a true Maass form.
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Isolating eigenvalues

The Selberg Trace formula relates eigenvalues of Maass forms to the

geometry of the group, giving a relation (loosely) of the form

∑
h(rn) =

∫ ∞

−∞

rh(r) tanh(πr)dr +
∑

conj T∈Γ

(∗)h̃(T ).

In forthcoming work, Andrei Seymour-Howell describes how to explicitly

implement the Selberg Trace formula to get low quality estimates for

eigenvalues.

In practice, we’ll start with these approximations to eigenvalues and use

Hejhal’s algorithm to improve the estimates.
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Verification

To understand how to perform rigorous verification, we need to examine

the sources of error in the linear system.

Recall that we have a homogenized linear system V (r )⃗c ≈ 0, which is a

(κM)× (κM) dimensional system, where κ is the number of distinct

cusps and M is the number of Fourier coefficients we use for truncated

Fourier series.

Using c(1) = 1, we obsolete the first column of the matrix and remove

the first row to think of as an auxiliary equation. We then have a

(κM − 1)× (κM − 1) dimensional system V (r )⃗c ≈ b(r), and an auxiliary

equation of the form c⃗ · v(r) + w(r) ≈ 0.

(One form of Hejhal’s algorithm is to iteratively solve V (r )⃗c = b(r) while

minimizing the error from the auxiliary equation A(r) := c⃗ · v(r) + w(r)).
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Idea of verification

Suppose that the interval [r − ϵ, r + ϵ] is known to contain a unique

eigenvalue R . Write R = r + δ.

We can bound the error δ numerically using the auxiliary equation

A(r) = c⃗ · v(r) + w(r).

From the Taylor expansion

A(R) = A(r) + A′(r)δ + A′′(r̃)δ2/2

(which holds for some r̃ between r and R), we find that

|δ| = |A(r)− A(R)|
|A′(r) + A′′(r̃)δ/2| .

When the initial guess r is good enough, the numerator should be very

small and the denominator is approximately A′(r). Thus we approximate

A′(r) very carefully and bound everything else.
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|δ| = |A(r)− A(R)|
|A′(r) + A′′(r̃)δ/2| .

It’s concerning that R (which we don’t know) appears in this equation.

But A(R) is the auxiliary equation coming from the first row of the linear

system, and should be very very small. The only reason why it’s not zero

is due to error from truncating Fourier expansions. Thus even though it’s

not known, it can be bounded.
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Other Complications

1. The eigenvalue candidate r is only near a true eigenvalue R , and we

don’t know R .

2. We also don’t know the precise value of r̃ in the Taylor expansion

above.

3. Truncating the Fourier expansions of f (z) gives many small errors.

4. In all computations, we work with Bessel functions and their

derivatives, which accrue computational errors.

And in the end, it’s possible that this verification algorithm might fail,

indicating that our initial estimate wasn’t good enough.

But when it does work, it works very well. Iterating produces even better

estimates.
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).

29



References i

P. Deligne.

Formes modulaires et représentations l-adiques.
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