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The Fibonacci zeta function



Fibonacci numbers and their zeta functions

We let F (n) denote the nth Fibonacci number, defined through the linear

recurrence F (n + 2) = F (n + 1) + F (n) with initial conditions

F (0) = 0,F (1) = 1. As is surely familiar, the sequence begins

0, 1, 1, 2, 3, 5, 8, 13, . . .

The full Fibonacci zeta function is the lacunary zeta function

ζFib(s) :=
∑
n≥1

1

F (n)s
=

1

1s
+

1

1s
+

1

2s
+

1

3s
+

1

5s
+ · · ·

The Fibonacci numbers F (n) grow exponentially, and thus it’s trivial to

see that the series converges for Re s > 0.

We will also investigate the zeta function associated to odd-indexed

Fibonacci numbers,

Φ(s) :=
∑
n≥1

1

F (2n − 1)s
=

1

1s
+

1

2s
+

1

5s
+

1

13s
+ · · ·
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Simple analytic continuation

Recall the classical formula

F (n) =
φn − (−φ)−n√

5
,

where φ = (1 +
√

5)/2 is the golden ratio. Using binomial series, it is

straightforward to give a meromorphic continuation for the Fibonacci

zeta function and Φ(s). We find that

Φ(s) =
∑
n≥1

5s/2

(φ2n−1 + φ1−2n)s
= 5s/2

∞∑
n=1

φ(2n−1)s
(
φ4n−2 + 1

)−s
= 5s/2

∞∑
n=1

φ(2n−1)s
∞∑
k=0

(
−s

k

)(
φ4n−2

)−s−k
= 5s/2

∞∑
k=0

(
−s

k

)
φs+2k

φ2s+4k − 1
,

which gives meromorphic continuation to C.
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Suggesting a modular connection

These zeta functions exist in the literature. Landau (inconclusively)

studied the value ζFib(1) in [Lan99], but noted that Φ(1) can be

expressed as special values of classical theta functions:

Φ(1) =

√
5

4
θ2

2

(
3−
√

5

2

)
,

where

θ2(q) =
∑
n∈Z

q(n+1/2)2

.

And there are a series of more recent results showing that ζFib(2k) is

transcendental for all k ≥ 1 (analogous to ζ(2k)) (due to Duverney,

Nishioka, Nishioka, Shiokawa, Nesterenko, and others).

The idea is to combinatorially represent these special values as a

nontrivial polynomial of certain Eisenstein series, and then to use a

general theorem of Nesterenko on transcendentality of Eisenstein series.

4



Connections to modular forms



Let r1(n) = #{n = m2 : m ∈ Z} (essentially a square-indicator function).

Then the classical theta function

θ(z) :=
∑
n∈Z

e2πin2z =
∑
n≥0

r1(n)e2πinz

is a (weight 1/2) modular form on Γ0(4), and its coefficients recognize

squares.

Our key fact for relating the Fibonacci numbers to modular forms is the

following criterion for determining whether a number N is Fibonacci.

Lemma

A nonnegative integer N is a Fibonacci number iff either 5N2 + 4 or

5N2 − 4 is a square. Further, N is an odd-indexed Fibonacci number iff

5N2 − 4 is a square, and even-indexed iff 5N2 + 4 is a square.

(We’ll return to this lemma later).
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Shifted convolutions

n is an odd-indexed Fibonacci number iff 5n2 − 4 is a square. In terms of

r1, this is equivalent to requiring that

r1(5n2 − 4) 6= 0 ⇐⇒ r1(5n − 4)r1(n) 6= 0.

Thus

Φ(s) =
∑
n≥1

1

F (2n − 1)s
=

1

4

∑
n≥1

r1(5n − 4)r1(n)

ns/2
,

which is a shifted convolution Dirichlet series formed from θ. Given

modular forms f =
∑

a(n)e(nz) and g =
∑

b(n)e(nz), there is a general

procedure one might try to follow to understand shifted convolutions∑
n≥1

a(n)b(n ± h)

ns
,

building on ideas of Selberg, Sarnak, Hoffstein, Hulse, and in the last few

years, my frequent collaborator group Hulse–Kuan–Lowry-Duda–Walker.
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The idea here is to consider V (z) = θ(5z)θ(z)y 1/2, which is a weight 0

automorphic form on Γ0(20, χ) whose 4th Fourier coefficient is

√
y
∑
n≥1

r1(5n − 4)r1(n)e−20nπy .

To study this as a Dirichlet series, it is convenient to use the real analytic

Poincaré series

P4(z , s) =
∑

γ∈Γ∞\Γ0(20)

Im(γz)se2πi4γzχ(γ).

Then one can compute that

4Φ(2s) =
∑
n≥1

r1(m)r1(5m − 4)

ms
=

(20π)s〈V ,P4(·, s + 1
2 )〉

Γ(s)
.

Thus the (odd-indexed) Fibonacci zeta function Φ(s) can be recognized

as an inner product between automorphic forms.
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The Poincaré series P4(z , s) has meromorphic continuation to C and is in

L2(Γ0(20, χ)\H), and thus the equality

4Φ(2s) =
(20π)s〈V ,P4(·, s + 1

2 )〉
Γ(s)

reproves the meromorphic continuation of Φ(s). But in practice the

meromorphic continuation of P4(z , s) is rather inconvenient to work with,

and little is gained in terms of pure meromorphic understanding from this

perspective.

Nonetheless, we will investigate the nature of the meromorphic

continuation from the modular form perspective.
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One way to understand the meromorphic continuation of the P4(z , s) is

to use its spectral decomposition.

P4(z , s) =
∑
j

〈µj ,P4(·, s)〉µj(z) + (continuous),

where µj ranges over a basis of Maass eigenforms and the ‘continuous’

part refers to a sum over Eisenstein series.

(It turns out that the first sets of poles all come from the discrete

spectrum (except for a distinguished pole at s = 0), and we will focus

entirely on the discrete spectrum in this talk).

We study analytic behavior of Φ(2s) through

4Φ(2s) =
(20π)s

Γ(s)

∑
j

〈µj ,P4(·, s)〉〈V , µj〉+ (continuous).
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But not every pole from the Poincaré series yields a pole in Φ(2s). Many

parts of the spectral expansion disappear. In particular, the only Maass

forms that contribute are self-dual.

Lemma

〈V , µj〉 = 0 unless µj is self-dual.

(proof sketch).
Recognize θ as the residue of the weight 1/2, level 20 Eisenstein series

E
1
2 (z ,w). This will work as the space of modular forms of weight 1/2 on

Γ0(20) is 1-dimensional. Then

〈V , µj〉 = 〈y 1
2 θ(5z)θ(z), µj〉 = c Resw= 3

4
〈y 1

4 θ(5z)E
1
2 (z ,w ; Γ0(20)), µj〉

= c ′ Resw= 3
4

Γ(w − 1
4 + itj)Γ(w − 1

4 − itj)

(10π)wΓ(w + 1
4 )

∑
n≥1

ρj(−5n2)

n2w− 1
2

.

The inner product against the Eisenstein series leads to a Rankin-Selberg

type expansion for what is nearly the symmetric square L-function

associated to µj .
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Self-dual Maass forms

Self-dual forms of the type that contribute were studied by Maaß himself.

Let η(b) be the Hecke character on Q(
√

5) by

η
(
(a + b

√
2)
)

= sgn(a + b
√

5) sgn(a− b
√

5)
∣∣∣a + b

√
5

a− b
√

5

∣∣∣ iπ
2 log((1+

√
5)/2)

.

We note that the number φ = (1 +
√

5)/2 is a fundamental unit for

Q(
√

5), and that defining η on principle ideals is sufficient as O(
√

5) is a

PID. For each integer m, consider the function

µm(z) :=
∑
n≥1

∑
N(b)=n

η(b)m
√

yK imπ
2 log((1+

√
5)/2)

(2πny) ·

{
cos(2πnx), 2 - m

sin(2πnx), 2 | m.

Following Maaß, and as recounted in [Bum97, Theorem 1.9.1], the

functions µm(z) are Maass cusp forms for Γ0(5) with nebentypus χ, and

thus also Maass cusp forms for Γ0(20). The coefficients of µm are real,

and thus self-dual.

These are dihedral Maass forms. 11



Polar comparison: binomial continuation

As a quick check, we examine the first line of poles. From the simple

binomial expression, we have the continuation

4Φ(2s) = 4 · 5s
∞∑
k=0

(
−2s

k

)
φ2s+2k

φ4s+4k − 1
,

so that the poles on the line Re s = 0 all come from the single term

5sφ2s/(φ4s + 1), which are at

s =
mπi

2 log φ
(m ∈ Z).
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Polar comparison: modular continuation

From the discrete portion of the continuation of P4(z , s), we have

4Φ(2s) ≈ (20π)s

Γ(s)

∑
j

〈µj ,P4(·, s)〉〈V , µj〉

≈ (20π)s

Γ(s)

∑
j

ρj(4)
√
πΓ(s + itj)Γ(s − itj)

(16π)sΓ(s + 1
2 )

〈V , µj〉,

which has potential poles at s = ±itj along the line Re s = 0. Here, tj is

the “type” associated to the Maass form. The “types” associated to the

dihedral Maass forms above are exactly

itm =
mπi

2 log φ
(m ∈ Z,m 6= 0).

Thus the poles of Φ(2s) line up perfectly with the poles coming from the

dihedral Maass forms (and a distinguished pole at s = 0). This story

continues for all poles, not just those on Re s = 0.
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Fibonacci trace zeta functions



I do not yet fully understand the complete story. It might be the case that

there exists a way to directly recognize Φ(s) as coming from Eisenstein

series and dihedral Maass forms — but if so, I haven’t found it yet.

What we do know is that the odd-indexed Fibonacci zeta function Φ(s)

has a modular interpretation. Each pole in the meromorphic continuation

is either on the line Re s = 0 or comes from a dihedral Maass form.

And the key idea to this method of recognizing the relationship was the

lemma relating Fibonacci numbers to squares.

Lemma

A nonnegative integer N is a Fibonacci number iff either 5N2 + 4 or

5N2 − 4 is a square. Further, N is an odd-indexed Fibonacci number iff

5N2 − 4 is a square, and even-indexed iff 5N2 + 4 is a square.
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Explanation of Lemma I

We can view this lemma as describing behavior of units in O(
√

5). Any

integer in O(
√

5) can be written uniquely as

x = m + n 5+
√

5
2 ,

and x is a unit iff N(x) = ±1, which is equivalent to the condition that

u2 = 5n2 ± 4, (where u = 2m + 5n).

Suppose u and n are a positive solution making x a unit. As φ is a

fundamental unit

x =
u + n

√
5

2
= φr =

1

2

[
(φr + φr ) +

φr − φr√
5

√
5
]

=
1

2

[
L(r) + F (r)

√
5
]
,

where L(r) are the Lucas numbers and F (r) are the Fibonacci numbers.
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Explanation of Lemma II

Thus if there is a (positive) solution (u, n) to u2 = 5n2 ± 4, then

u + n
√

5

2
=

L(r) + F (r)
√

5

2

for some r , and thus n is Fibonacci. Conversely, if n = F (r) for some r ,

then

φr =
1

2

[
L(r) + F (r)

√
5
]

=⇒ L(r)2 − 5F (r)2 = ±4,

and thus n is part of a solution to u2 = 5n2 ± 4.

The condition that 5n2 ± 4 is a square is really an indicator that a

particular element is a unit in a ring of integers. This generalizes readily.
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Generalization of Lemma I

We can generalize this lemma to describe the behavior of units in

O(
√

p). Any integer in O(
√

p) can be written uniquely as

x = m + n
q+
√
q

2 ,

{
q = p p ≡ 1 mod 4

q = 4p p ≡ 2, 3 mod 4

and x is a unit iff N(x) = ±1, which is equivalent to the condition that

u2 = qn2 ± 4, (where u = 2m + qn).

Suppose u and n are a positive solution making x a unit. Let ε be a

fundamental unit

x =
u + n

√
q

2
= εr =

1

2

[
(εr + εr ) +

εr − εr
√

q

√
q
]

=
1

2

[
Lp(r) + Fp(r)

√
q
]
,

where Lp(r) = Tr(εr ) are p-Lucas numbers and Fp(r) = Tr(εr/
√

q) are

p-Fibonacci numbers.
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Generalization of Lemma II

Thus if there is a (positive) solution (u, n) to u2 = qn2 ± 4, then

u + n
√

q

2
=

Lp(r) + Fp(r)
√

q

2

for some r , and thus n is p-Fibonacci. Conversely, if n = Fp(r) for some

r , then

εr =
1

2

[
Lp(r) + Fp(r)

√
q
]

=⇒ Lp(r)2 − qFp(r)2 = ±4,

and thus n is part of a solution to u2 = qn2 ± 4.

(Note that if p = 2 or p ≡ 3 mod 4, the equality q = 4p has the effect of

making most 4s appearing above to factor out).
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From this point of view, the major idea is that the Fibonacci numbers

F (n) are traces of powers of the fundamental unit (divided by
√

5),

F (n) = Tr(φn/
√

5).

For the ring of integers associated to a quadratic extension Q(
√

p), if we

define p-Fibonacci numbers1 as

Fp(n) = Tr(εn/
√

q)

as above, then the lemma applies and p-Fibonacci numbers and we see

that p-Fibonacci numbers are detectable via a quadratic form that can be

built out of theta functions.

1I made this definition up. Don’t look for it in the literature.
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Trace zeta function approach

If the fundamental unit ε satisfies N(ε) = −1, then the proof methods

described above for Φ(s) apply essentially verbatim for

Φp(s) =
∑
n≥1

1

Fp(2n − 1)s
=
∑
n≥1

1

Tr(ε2n−1/
√

q)s
,

using Vp = θ(pz)θ(z) in place of V . It also remains true that the poles

come from self-dual Maass forms.2

(If there are not units of norm −1, then one must instead study the series∑
n≥1

r1(qn+4)r1(n)

ns
,

with a + instead of a −. For technical reasons, it is necessary to perform

a different continuation of this series. I don’t get into that in this talk).

2This direction of generalization was suggested to me by Eran Assaf.
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Pell’s Equation



The equations u2 = qn2 ± 4 are Pell equations. It is also possible to

construct a zeta function by interpreting the Pell equation directly as a

quadratic form.

For example, we will consider the Pell equations

x2 − 2y 2 = −h, (h ∈ N>0).

Solutions do not exist for every h, but when solutions exist they are

exponentially sparse and satisfy a linear recurrence relation.

Analogous with the Fibonacci-zeta case, we can recognize this zeta

function as

4Dh(s) =
∑
m≥1

r1(m)r1(2m − h)

ms
.

(The identification to solutions x2 − 2y 2 = −h is through y 2 = m).
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Alternately, we note that for each h there exists a number d = d(h) of

fundamental solutions (u1, v1), . . . , (ud , vd). Then the y 2 part of the

solutions are given by the linear recurrences

yk(n) = 6yk(n − 1)− yk(n − 2) = αk(3 + 2
√

2)n + βk(3− 2
√

2)n,

where αk = 1
2 vk + 1

2
√

2
uk and βk = 1

2 vk − 1
2
√

2
uk . The exact fundamental

solutions are not trivial to determine in general.

For any fixed h, it is straightforward to adapt the binomial series method

to provide an analytic continuation for the lacunary Dirichlet series

formed from the solutions yk(n). Let ω = 3 + 2
√

2, and note that

ω−1 = ω. Then we define

Dh(s) =
∑
n≥0
k≤d

1

(αkωn + βkω−n)2s
=
∑
k≤d

1

α2s
k

∑
n≥0

ω−2ns

(1 + (βk/αk)ω−2n)2s
.

This latter expression has meromorphic continuation to the plane and is

analytic for Re s > 0 (and agrees with the previous expression).
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To compare with the previous trace-zeta function, note that ε = 1 +
√

2

is a fundamental unit, N(ε) = −1, and ω = ε2 = 3 + 2
√

2.

Thus the linear recurrences defining the solutions yk(n) are in terms of ε2

and ε2. The major distinction is that the initial conditions for the linear

recurrences are different (and there may be multiple).

From the modular forms perspective, it seems far more natural to

consider the whole ensemble of solutions across each linear recurrence. It

is interesting to note that the pure binomial approach is indifferent.
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We recognize this again as a shifted convolution, now with

V = θ(2z)θ(z)
√

y , which is a modular form on Γ0(8, χ). The hth Fourier

coefficient of V contains the relevant arithmetic data, and we use a

Poincaré series that extracts the hth Fourier coefficient:

Ph(z , s) =
∑

γ∈Γ∞\Γ0(8)

Im(γz)se2πihγzχ(γ).

Then one can compute that

Dh(s) =
(8π)s〈V ,Ph(·, s + 1

2 )〉
Γ(s)

,

and abstractly we get another continuation.

This same construction applies to any Pell equation (and restricting to

Pell equations of the for x2 − dy 2 = −h (with a minus) accomplishes the

same minor technical detail as requiring N(ε) = −1 previously).
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Remarks on x2 − 2y 2 = −h case

But the x2 − 2y 2 = −h case is special for one major reason: the

underlying modular forms are simple enough that one can explicitly

compute many pieces. In particular, one can compute the piece

corresponding to the pole at s = 0 explicitly (in terms of Eisenstein

series).

Theorem (Unpublished: HKLDW)

For h ≥ 1 and Re s � 1, we have that

Dh(s) =
2s
√
πσχ0 (h)Γ(s)

log(1 +
√

2)hsΓ(s + 1
2 )

+ 2s
√
π
∑
j

ρj(h)

hs

G (s + 1
2 , itj)

Γ(s)
〈V , µj〉

in which G (s, z) = Γ(s − 1
2 + z)Γ(s − 1

2 − z)/Γ(s). Further, each Maass

form µj that appears in this decomposition is self-dual. Here,

σχ0 (h) =
∑

d|h χ(d).

The first term is exactly the contribution from the dihedral Eisenstein

series! 25



Remarks (continued)

Comparing residues of poles at s = 0 across the binomial representation

and the modular representation shows that

2d

logω
= Ress=0

2s
√
πσχ0 (h)Γ(s)

log(1 +
√

2)hsΓ(s + 1
2 )

=
σχ0 (h)

log(1 +
√

2)
,

where d = d(h) is the number of fundamental solutions to the Pell

equation.

Recalling that ω = (1 +
√

2)2, we see that that d = σχ0 (h), which gives a

class number formula for solutions to the Pell equation.3

3This is not a new result, but it is a nice result.
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Relation to 3APs of Squares



Solutions to the Pell equation x2 − 2y 2 = −h are closely related to

3-term arithmetic progressions (3APs) of squares. Many classical

problems in number theory are related to 3APs of squares, such as

integer Pythagorean triangles, congruent numbers, and rational points on

X 2 + Y 2 = 2Z 2.

In fact, the impetus for this talk came from trying to study the

distribution of 3APs of squares.
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The function r1(m)r1(2m − h) trivially detects a 2AP of squares,

{m, 2m − h}. Thus

4Dh(s) =
∑
m≥1

r1(m)r1(2m − h)

ms

as a Dirichlet series detects 2APs of squares as m ranges.

Naive question

Can we understand 3APs of squares {h,m, 2m − h} by studying the

(multiple) Dirichlet series

D(s,w) =
∑
h≥1

4Dh(s)r1(h)

hw
=
∑

m,h≥1

r1(h)r1(m)r1(2m − h)

mshw
?

This is a Dirichlet series formed from individual Pell-type Dirichlet

series. Is it understandable?

28



Answer: Yes.

But not through the raw binomial series continuation of Dh(s). The

uncertain behavior of the fundamental solutions makes computing with

the explicit binomial series untenable.

But the modular form continuation is robust enough to make sense of

D(s,w).
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Heuristic explanation

From the evaluation

Dh(s) =
2s
√
πσχ0 (h)Γ(s)

log(1 +
√

2)hsΓ(s + 1
2 )

+2s
√
π
∑
j

ρj(h)

hs

G (s + 1
2 , itj)

Γ(s)
〈V , µj〉,

we can study what would come from
∑

h≥1 Dh(s)r1(h)h−w . In the first

term, the sum over h becomes∑
h≥1

σχ0 (h)r1(h)

hs+w
=
∑
h≥1

σχ0 (h2)

h2s+2w
.

In the jth summand, the sum over h becomes∑
h≥1

ρj(h2)

h2s+2w
.

Both of these are essentially symmetric square L-functions associated to

well-studied objects, and are thus understandable.
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In fact, D(s,w) has meromorphic continuation to all of C2.

In forthcoming work with Kuan, Hulse, and Walker, we study and use

this meromorphic continuation to prove a variety of counting results

associated to 3APs of squares.

A preprint will shortly be available (hopefully by next week).
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History of this project

In [HKLDW19], this collaborator group examined a naive shifted sum for

detecting if a given number t is congruent:∑
m,n≤X

r1(m + h)r1(m − h)r1(m)r1(tn).

This sum is asymptotically of size
√

X if t is congruent, and is otherwise

0. Thus whether t is congruent is determined by poles of∑
m,n≥1

r1(m + h)r1(m − h)r1(m)r1(th)

mshw
.

This seemed like a potential refinement of Tunnell’s theorem, but we

were unable to understand this series. By counting congruent numbers

(instead of detecting them), we arrive at D(s,w), which we understand

through Dh(s) as above.

Initially we ignored dihedral Maass forms and we thought that we had

proved that both the continuous and discrete portions of the spectral

decomposition vanished. Thus we looked for alternate continuations.
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Outstanding questions

1. To prove everything so far, we begin with a binary quadratic form,

pass through theta functions to a modular form, and explicitly

understand the properties of this modular form. But this feels like an

instance of a deeper set of ideas.

2. Is there a natural way to explain why only Eisenstein series and

dihedral forms appear here?

3. Is there some sort of representation theoretic explanation (perhaps

especially for the trace-oriented point of view)?
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Thank you very much.

Please note that these slides (and references

for the cited works) are (or will soon be)

available on my website

(davidlowryduda.com).
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