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A classical pattern

Often we have an arithmetic sequence we want to understand, and we try

to understand it through it’s Dirichlet series. A few examples are

• (Epstein zeta function) ζ2(s) =
∑
n≥1

r2(n)

ns
, where r2(n) is the number

of ways of representing n as a sum of 2 squares.

• (modular L-function) L(s, f ) =
∑
n≥1

a(n)

ns+ k−1
2

, where f =
∑

a(n)e(nz)

is a weight k cuspidal modular form.

Or perhaps even

• (logarithic derivative of the zeta function)
ζ ′(s)

ζ(s)
= −

∑
n≥1

Λ(n)

ns
,

where Λ(n) is the von Mangoldt function.

Each of these are related to classical problems in analytic number theory.
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Given each Dirichlet series, it is very natural to extract information about

the partial sums of the coefficients.

To do so, we use the analytic properties about the Dirichlet series and

use contour integrals (inverse Mellin transforms)

1

2πi

∫ c+i∞

c−i∞

D(s)

X s
ds.

Other sorts of integral transforms give access to a rich variety of other

information about the sequences.
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From ζ2(s), we can study S2(R) =
∑

n≤R r2(n), which counts the

number of integer lattice points in a circle of radius R. This is known as

the Gauss circle problem.ζ2(s) has a pole at s = 1, leading to

S2(R) =
∑
n≤R

r2(n) = πR + E2(R)

for some error term E2(R).

From L(s, f ), we can study Sf (X ) =
∑

n≤X a(n), the average order of

coefficients of the cusp form f . L(s, f ) has no poles, and so we get

merely that

Sf (X ) =
∑
n≤X

a(n) = Ef (X ),

some sort of error term.

From ζ ′(s)/ζ(s), we can study ψ(X ) =
∑

n≤X Λ(n), (the Chebyshev

function). This has a pole at s = 1 and at each zero of the zeta function,

leading to the explicit formula (used to prove the prime number theorem)

ψ(X ) =
∑
n≤X

Λ(n) = X −
∑
ρ

X ρ

ρ
+ EΛ(X ).
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Understanding Error Terms

The question then becomes: how do we understand the error terms? For

S2(R) and Sf (n), this is often done by studying the Dirichlet series of

squared coefficients: ∑
n≥1

r2(n)2

ns
,

∑
n≥1

a(n)2

ns+k
.

Alternately, over the last few years my collaborators and I have introduced

and studied the Dirichlet series formed of the partial sums themselves:∑
n≥1

S2(n)2

ns
,

∑
n≥1

E2(n)2

ns
,

∑
n≥1

Sf (n)2

ns

We show that each of these series has meromorphic continuation to C.

Each have poles at s = 1 (when normalized). But like ζ ′/ζ, each have

infinitely many poles at locations we don’t quite understand, and with

residues we don’t understand.
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The poles

Let’s give an idea of where these poles come from in the case of the

Gauss Circle problem.

There is a decomposition of the shape

∑
n≥1

S2(n)2

ns
≈

∑
n≥1

r2(n)2

ns
+

∑
m,n≥1

r2(n)r2(n + m)

(n + m)s
+ integral transform.

The first sum is understandable — in fact it’s exactly

∑
n≥1

r2(n)2

ns
=

16ζ(s)2L(s, χ−4)2

(1 + 2−s)ζ(2s)
.

But the second is harder to understand.

6



Spectral decomposition and spectral poles

To understand the second term, we phrase the problem in terms of

modular forms and use a spectral decomposition.

In this case, θ(z)2 = 1 +
∑

n≥1 r2(n)e(nz) is a weight 1 modular form on

Γ0(4), and using its spectral decomposition, one can show that

∑
n,m≥1

r2(n)r2(n + m)

(n + m)2mw
=

∑
j

(Maass data)G (s, itj)+
∑
a

∫
(Eisenstein data),

a decomposition in terms of data corresponding to Maass waveforms and

integrals against Eisenstein series associated to the cusps of Γ0(4). I’ve

omitted almost every detail except for G (s, itj), which is the ratio of

Gamma functions
Γ(s − 1

2 + itj)Γ(s − 1
2 − itj)

Γ(s)2 ,

which have lots and lots of poles.
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Confusing asymptotics

With this, we show ∑
n≥1

E2(n)2

ns

has poles at s = 3/2, s = 1, s = 1/2, and at s = 1
2 ± itj for each tj

coming from a Maass form.

One could use this to show, for example,

∑
n≥1

E2(n)2e−n/X = cX 3/2 + c ′X + c ′′
√
X +

∑
±itj

c±tjX
1
2±itj +O(X 1/4+ε)

But we know almost nothing about the residual coefficients c±tj or the

distribution of the itj themselves, except that they are O(X 1/2+ε) overall.

Is it possible that there is tremendous cancellation all the time, so the

spectral sum is much smaller than we expect all the time? Or is the term

of size Ω(X 1/2)? How do we understand these terms?
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1920s tech

Until this week, I thought I was going to present a variety of other

arithmetic phenomena that have spectral poles giving what looks like Ω

terms, but which I didn’t understand.

But this week, I happened across the work of Ingham in the 1920s, and I

learned an interesting technique.
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A theorem

Theorem

Suppose D(s) =
∑

n a(n)n−s is a Dirichlet series that converges

absolutely somewhere, and which has meromorphic continuation to C.
Further, suppose D has at least one non-real pole, and let

m := sup{Res : s a non-real pole}.

Let S(x) =
∑

n≤X a(n).

Finally, let MT(X ) be the sum of the residues of the real poles of

D(s)X s/s with real part ≥ m.

Then

S(X )−MT(X ) = Ω±(Xm−ε)

for every ε > 0.

Here, f (x) = Ω±(g(x)) means that there is a constant c > 0 such that

lim sup f (x)/g(x) > c and lim inf f (x)/g(x) < c — or rather that f (x) is

at least as large as g both positively and negatively.
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Thus, for example, we have that∑
n≤X

E2(n)2 − (cX 3/2 + c ′X + c ′′
√
X ) = Ω±(X 1/2−ε).

Or, if Θ is the supremum of the real parts of the non-trivial zeros of the

zeta function, then ∑
n≤X

Λ(n)− X = Ω±(XΘ−ε).

(Presumably Θ = 1/2.)
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Main idea of the proof

Let D(s) =
∑

n≥1 a(n)n−s , and suppose that D(s) converges absolutely

for Res > σ0 (i.e. that σ0 is the abscissa of convergence) and has

meromorphic continuation to C.

There is a theorem of Landau that says that if a(n) > 0 for all sufficiently

large n, then σ0 is a singularity of D(s).

This can be phrased through the Mellin transform as well.
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Dirichlet integrals

That is, suppose a(x) is an integrable function, and

F (s) =

∫ ∞
1

a(x)

x s
dx

converges at s0. Then

1. (many results of Dirichlet series hold) for all s with Res > Res0,

F (s) converges.

2. (Landau’s Theorem) if a(x) > 0 for all sufficiently large x , then

σ0 = Res0 is a singularity of F (s).

And more generally, essentially the whole theory of Dirichlet series applies

to these Dirichlet integrals as well. (And was being actively studied in the

1920s).
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Proof of Ω± theorem

With this, we can now describe how to prove the Ω± theorem.

Recall we have D(s) =
∑

a(n)n−s ; S(X ) =
∑

n≤X a(n); m is the

supremum of the real parts of non-real poles; and MT(X ) is the sum of

the residues of D(s)X s/s with s ≥ m.

Now suppose that for some k < m, we have that

S(x)−MT(x)− xk > 0 for all sufficiently large x . Consider

F (s) =

∫ ∞
1

S(x)−MT(x)− xk

x s+1
dx .

F (s) is essentially the Dirichlet series D(s) with the leading real poles

removed, minus 1/(s − k). In particular, F (s) converges for Res > m,

but has at least one non-real singularity near Res = m. But by Landau’s

Theorem, the first singularity needs to be real contradiction! (a similar

argument applies in the always negative case).
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Thank you very much.

Please note that these slides (and references

for the cited works) are available on my

website (davidlowryduda.com).
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