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Introduction



The Gauss Circle Problem

In this talk, we will be discussing analogies and variants of the Gauss

Circle Problem, including many ideas contained in or following from ideas

in my thesis.

Gauss Circle Problem

How many integer lattice points are contained in a circle of radius
√
R

centered at the origin? Or equivalently: how many integer solutions are

there to x2 + y2 ≤ R?

We will use S2(R) to denote the number of integer lattice points inside

the circle or radius
√
R.

Let rk(m) denote the number of k-tuples (n1, n2, . . . , nk) such that

n2
1 + · · ·+ n2

k = m. Then the Gauss Circle Problem is also equivalent to

estimating

S2(R) :=
∑

0≤m≤R

r2(m).

This is a classical problem, first considered over 200 years ago.
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It is intuitively clear that S2(R) ≈ VolB(
√
R). This was known to Gauss,

who showed that

S2(R)− VolB(
√
R)�

√
R,

or rather that the discrepancy between the number of lattice points and

the area is at most the perimeter (up to maybe some constant).

Perhaps the first improvement came from Sierpiński [Sie06], who showed

that

S2(R)− VolB(
√
R)� R

1
3 .

The best current bound is due to Heath-Brown [HB99], who showed

S2(R)− VolB(
√
R)� R

131
416 +ε.

What is the correct bound?
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Mean Square Estimates

Hardy and Littlewood showed that on average, the correct exponent is
1
4 .That is, they showed that∫ X

0

∣∣S2(r)− VolB(
√
r)
∣∣2dr = cX

3
2 + O(X

5
4 +ε),

and also that

S2(R)− VolB(
√
R) = Ω(R

1
4 ),

so that the “correct” order of growth appears to be 1
4 in the exponent.

4



Enter Ramanujan

It is an interesting coincidence that at the same time, Ramanujan was

studying the coefficients of the Ramanujan τ function, defined by

equating coefficients in∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24.

Ramanujan believed that

τ(n)� n
11
2 +ε.

(This turned out to be true, though it’s a bit hard to guess why

Ramanujan thought so).

It was later also conjectured that∑
n≤X

τ(n)� X
11
2 + 1

4 +ε.

The conjectured 1
4 is very reminiscent of the Circle Problem.
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Connections to Modular Forms

If one assembles the Ramanujan τ function as

∆(z) =
∑
n≥1

τ(n)e(nz)

then we get the ∆ function, which is a weight 12 modular cusp form on

SL(2,Z).It turns out that the observations on Ramanujan’s τ function

generalize towards many modular forms.

A weight k holomorphic modular form is a holomorphic function f on the

upper half-plane H, which satisfies a set of “periodicity” conditions

f (γz) = (cz + d)k f (z), γ =
(
a b
c d

)
∈ Γ ⊆ SL(2,Z),

and which is holomorphic at ∞,which roughly translates to f having a

Fourier expansion

f (z) =
∑
n≥0

a(n)e(nz).
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The Ramanujan τ function gives the ∆ modular form, which is a cusp

form.In the Fourier expansion, this means that the constant coefficient is

0. Suppose

f (z) =
∑
n≥1

a(n)e(nz)

is a weight k cusp form on GL(2).Then it is now a celebrated theorem of

Deligne [Del74] that

a(n)� n
k−1

2 +ε,

and conjectured that ∑
n≤X

a(n)� X
k−1

2 + 1
4 +ε.

Notice that 1
4 , reminiscent of the circle problem again.
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Let Sf (n) denote the partial sum of the first n Fourier coefficients of a

weight k modular cusp form f (z),

Sf (n) :=
∑
m≤n

a(m).

Then Chandrasakharan and Narasimhan [CN62] showed a mean square

estimate parallel to that of Hardy and Littlewood:∫ X

0

∣∣Sf (t)
∣∣2dt = cX k−1+ 3

2 + O(X k+ε).

And it is now conjectured that the “correct order of growth” of Sf (n) is

also 1
4 .

Cusp Form Analogy

The goal of finding the correct order of growth for the size of Sf (n) is

what I call the “Cusp Form Analogy” to the Gauss Circle Problem.
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Progress on the Cusp Form

Analogy



Dirichlet Series for Sums of Coefficients of Cusp Forms

The state of the art right now with respect to the Cusp Form Analogy for

an individual sum is essentially due to Hafner and Ivić [HI89], who

showed that (with some restrictions on f )

Sf (n)� n
k−1

2 + 1
3 +ε.

For mean-square results, there has been little progress since

Chandrasakharan and Narasimhan.However, there has been progress on

“short-interval estimates,” culminating in Jutila’s proof [Jut87] that

1

X
3
4 +ε

∑
|n−X |≤X

3
4

+ε

|Sf (n)|2 � X k−1+ 1
2 .

This says that the conjectured bound holds on intervals of length X
3
4 +ε

around X , and is qualitatively stronger than the mean-square result.
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Why should we care about short-interval type results?

It is possible to easily prove estimates for individual Sf (n) from

short-interval averages of Sf (n).In particular, if

1

Xα

∑
|n−X |<Xα

|Sf (n)|2 � X k−1+ 1
2 ,

then one can show that

Sf (X )� X
k−1

2 + 1
6 + α

3 .

So the Conjecture would follow from a short-intervals result over an

interval of length X
1
4 around X .

(How do we show this? Briefly, suppose there are large X for which

Sf (X ) ≥ X
k−1

2 +β . Then Sf (X + `)� Sf (X ) for `� Xβ , since each

summand is much smaller than the whole sum. Now estimate∑
|n−X |≤Xα |Sf (X )|2 and compare to the short-interval result.)
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Along with my collaborators Hulse, Kuan, and Walker, we investigated

this short-interval question. [HKLDW17c]

Theorem (HKLDW II)

1

X
2
3 (logX )

1
6

∑
|n−X |≤X

2
3 (log X )

1
6

|Sf (n)|2 � X k−1+ 1
2 .

This is a sizable improvement over Jutila’s 3
4 . As an easy corollary, we

can show that

Sf (X )� X
k−1

2 + 7
18 ,

(which is worse than what’s known).

With a lot of extra work, we can show that

Sf (X )� X
k−1

2 + 1
3 ,

(which matches what’s known, up to a tiny log factor). So this isn’t

quite strong enough to improve individual bounds.

11



What’s the New Idea?

In a set of recent papers (and my thesis), three new Dirichlet series were

introduced and studied:∑
n≥1

Sf (n)

ns
,
∑
n≥1

|Sf (n)|2

ns
, and

∑
n≥1

Sf (n)2

ns
.

These are new objects, and (as far as I can tell) the latter two don’t have

any good reason to behave nicely. However, each has (mostly

understandable) meromorphic continuation to the plane. These are very

natural Dirichlet series to use in the study of the Cusp Form Analogy.

At the heart of the analysis are shifted convolution sums in two complex

variables,

Z (s,w) :=
∑
n,h

a(n + h)a(n)

(n + h)snw
,

as well as the spectral theory of automorphic forms.

The obstacle to further improvement is that we know so little about the

distribution of eigenvalues of the hyperbolic Laplacian, which obfuscates

a detailed analysis of the discrete spectrum.
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Brief Methodology I

One can (roughly) decompose the Dirichlet series into

∑
n≥1

Sf (n)2

ns
=

L(s, f × f )

ζ(2s)
+

∫
(σ)

L(s − z , f × f )

ζ(2s − 2z)
ζ(z)B(z , s − z)dz

+ Z (s, 0) +

∫
(σ)

Z (s − z , 0)ζ(z)B(z , s − z)dz ,

where Z (s,w) is the convolution (from the previous slide) and B(a, b) is

the Beta function.This reduces the study to a sufficient analytic

understanding of L(s, f × f ) and Z (s,w).

This decomposition follows from a Mellin-Barnes type integral identity,∑
n,m≥1

a(n)

(n + m)s
=
∑

n,m≥1

∫
(σ)

a(n)

ns−z
1

mz

Γ(z)Γ(s − z)

Γ(s)
dz .
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Brief Methodology II

The function L(s, f × f ) is a Rankin-Selberg L-function,

L(s, f × f ) = ζ(2s)
∑
n≥1

a(n)2

ns
.

The analytic properties of L(s, f × f ) are classical, and can be related to

the properties of an Eisenstein series,

E (z , s) =
∑

γ∈Γ∞\ SL(2,Z)

Im(γz)s .

This comes from the (moral) equality

L(s, f × f ) =
ζ(2s)(4π)s

Γ(s)
〈|f |2,E (·, s)〉.

in which 〈·, ·〉 is the Petersson inner product.
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Brief Methodology III

The function Z (s,w) is the shifted convolution sum

Z (s,w) = 2
∑
n,h≥1

a(n)a(n − h)

nshw
.

Jeff’s students are well-versed in these sums.We can understand the

shifted convolution by using a Poincaré series

Ph(z , s) =
∑

γ∈Γ∞\ SL(2,Z)

Im(γz)se2πihγz .

Poincaré series are closely related to Eisenstein series, and a big idea is

that the inner product 〈|f |2,E (·, s)〉 gives access to the 0th Fourier

coefficient of |f |2,and the inner product 〈f ,Ph(·, s)〉 gives access to the

hth Fourier coefficient.
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Brief Methodology IV

For the shifted convolution, we can write

Z (s,w) =
∑
h≥1

〈Ph(z , s), |f |2〉
hw

.

We can understand Z (s,w) in a second way by using Selberg’s Spectral

Decomposition on the Poincaré series.

That is, write

Ph(z , s) =
∑
j

〈Ph, µj〉µj(z)︸ ︷︷ ︸
Discrete Spectrum

+
∑∫

(1/2)

〈Ph,E (·, u)〉E (z , u)du,︸ ︷︷ ︸
Continuous Spectrum

and substitute into the expression for Z (s,w).The great challenge is a

lack of understanding of the discrete spectrum.
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Further Results

Using these new Dirichlet series, my collaborators and I were able to

prove the following smoothed mean square result [HKLDW17a].

Theorem (HKLDW I)∑
n≥1

|Sf (n)|2e−n/X = CX k−1+ 3
2 + O(X k−1+ 1

2 +ε).

Actually, we prove something a bit mysterious. If g is another weight k

cusp form, we show

Theorem (HKLDW I)∑
n≥1

Sf (n)Sg (n)e−n/X = C ′X k−1+ 3
2 + O(X k−1+ 1

2 +ε).
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Theorem (HKLDW I restated)∑
n≥1

Sf (n)Sg (n)e−n/X = C ′X k−1+ 3
2 + O(X k−1+ 1

2 +ε).

This says that the sums Sf (n) and Sg (n) correlate very strongly (which is

surprising since both are changing signs with high frequency).In fact, the

sign changes of Sf (n) (and the individual a(n)) are closely related to the

Cusp Form Analogy.

This is related to, but a bit different from, the Sato-Tate description of

the distribution of the sizes of individual a(n).
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Since each a(n) ∼ n
k−1

2 +ε, if the signs of the individual a(n) were merely

random, then we would expect square root cancellation,

Sf (X ) ∼ X
k−1

2 + 1
2 .

Since we get strictly more cancellation, it’s as though the individual a(n)

collude to make the sum very small!

Along this train of thought, one can prove [HKLDW17d]

Theorem (HKLDW III)

The sequence {Sf (n)}n∈N has at least one sign change for some n in

the interval [X ,X + X
2
3 +ε] for all X � 1.

Actually, we can again prove something very mysterious. We can also

show that the overnormalized sums
∑

a(n)/n
k−1

2 + 1
4 change sign regularly,

indicating that the a(n) really do “collude” to cancel as much as possible.
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The Gauss Sphere Problem



A different variation of the Gauss Circle Problem is to instead ask:

Gauss d-Sphere Problem

How many integer lattice points are contained in a d-sphere of radius√
R centered at the origin? Or equivalently: how many integer

solutions are there to x2
1 + · · ·+ x2

d ≤ R?

We will use Sd(R) to denote the number of lattice points inside the

sphere of radius
√
R. Further, note that the Gauss d-Sphere Problem is

equivalent to estimating

Sd(R) =
∑

0≤m≤R

rd(m).

This is also a classical and highly studied problem.
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As with the Circle Problem, it is intuitively clear that

Sd(R) ≈ VolBd(
√
R), so the real goal is to understand

|Sd(R)− VolBd(
√
R)|. Through a Gauss-like argument, one can show

that

Sd(R)− VolBd(
√
R)� R

d−1
2 ,

bounding the error by the surface area. But just as in the Circle Problem,

something stronger is conjectured [IKKN04]:

Sd(R)− VolBd(
√
R)� Rα(d),where α(d) =

{
1
4 d = 2

d
2 − 1 d ≥ 3.

Notice the phase shift between dimensions 2 and 3. This somehow

reflects that these two dimensions are the most enigmatic.
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What’s Known for Higher Dimensions?

For really high dimensions, the circle method can be used to give very

accurate estimates.In 3 dimensions, the state of the art for an individual

estimate is due to Heath-Brown [HB99], and says

S3(R)− VolB3(
√
R)� R

21
32 +ε.

In 4 dimensions, the task is much easier since r4(n) = 8σ(n)− 32σ( n
4 ),

which is multiplicative and relatively well-behaved. One can show

S4(R)− VolB4(
√
R)� R logR,

which is only a log power off.In dimensions d ≥ 5, the correct order of

magnitude is known for the discrepancy.
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Mean Square Estimates

Mean square results follow a similar pattern, and are understood very well

for d ≥ 6. Of particular interest is the enigmatic 3-dimensional case.

Jarnik [Jar40] gave essentially the only major progress (in 1940) when he

showed that∫ X

0

|S3(r)− VolB3(
√
r)|2dr = CX 2 logX + O(X 2(logX )

1
2 ).

Note that the main term comes with a log factor — the 3 dimensional

case is unique in this regard.

When d = 4, there is a power savings of X
1
2 (ignoring log factors), and

for d ≥ 5 there is a power savings of X (also ignoring log factors). So

among all the d-dimensional Gauss Sphere Problems, the case when

d = 3 is the least understood.
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Idea: Build More Dirichlet Series

In analogy with the methodology for cusp forms, my collaborators and I

set out to investigate the Dirichlet series∑
n≥0

S3(n)2

ns
and

∑
n≥0

(S3(n)− VolB3(
√
n))2

ns
.

The thought is that S3(n) are the sums of the coefficients of the modular

form θ3(z), so maybe a similar construction will work. Miraculously, this

does work, and the ideas are very similar.

The primary difficulty is to get a deep understanding of the shifted

convolution sum ∑
n,h≥1

r3(n + h)r3(n)

(n + h)snw
,

and most of the ideas carry forward.

With two key exceptions.
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θ3 is a Half-Integral Weight Non-Cuspform

The underlying modular form is

θ3(z) =

(∑
n∈Z

e2πin2z

)3

= 1 +
∑
n≥1

r3(n)e2πinz .

This is a modular form of weight 3
2 on Γ0(4), and is not cuspidal.

• Half-integral weight modular forms carry a large set of challenges,

largely due to the fact that their coefficients are not multiplicative.

• Further, a complete spectral analysis is much simpler with

cuspforms, so it is necessary to modify our modular forms by

subtracting other, well-understood (i.e. Eisenstein) modular forms to

get a “small” object for analysis.

25



Fruits of Labor

In a paper that we are submitting this week [HKLDW17b], we show the

following theorem.

Theorem

There exists λ > 0 such that∫ X

0

∣∣S3(t)− VolB3(
√
t)
∣∣2dt = C ′X 2 logX + CX 2 + O(X 2−λ+ε).

This breaks Jarnik’s X 2 barrier and extracts a second main term.

Pushing our analysis to its extremes, we believe we can actually prove

Claim

∫ X

0

∣∣S3(t)− VolB3(
√
t)
∣∣2dt = C ′X 2 logX + CX 2 + O(X 2− 1

5 +ε).
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More generally, we also consider smoothed mean square estimates. With

smoothing, it is possible to see many minor terms.

Theorem

∑
n≥1

∣∣Sd(n)− VolBd(
√
n)
∣∣2e−n/X

= δ[d=3]C
′X 2 logX + CdX

d−1

+ δ[d=4]C4X
5
2 + C ′′d X

d−2 + O(X d− 5
2 +ε).

Notice that the d = 4 case is unique in that there is a second term one

half power of X below the main term.

As far as I know, this is the first theorem of this type for the

d-dimensional Sphere Problem. Combined with numerical

experimentation, it appears that there are very often secondary main

terms. It would be interesting to know what to expect in this situation,

but we are still uncertain.
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One-Sheeted Hyperboloids



The d-dimensional Gauss Sphere Problem concerns counting

#{x ∈ Zd : x2
1 + · · ·+ x2

d ≤ R} =
∑
m≤R

rd(m).

Suppose instead we want to count the number of lattice points on the

one-sheeted hyperboloid Hd,h for some positive integer h,

#{x ∈ Zd : x2
1 + · · ·+ x2

d−1 = x2
d + h}.

(Answer: infinitely many). So let’s count the number of lattice points on

the one-sheeted hyperboloid Hd,h and inside the ball B(
√
R). This is

equivalent to counting ∑
2m2+h≤R

rd−1(m2 + h),

which looks very similar to the Gauss d − 1 Sphere Problem sum, except

constrained along a quadratic.
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This leads to the following question (which is certainly in the same flavor

of problem as the Gauss Circle Problem).

One-Sheeted Hyperboloid Problem

How many integer lattice points are contained within the d-dimensional

sphere or radius
√
R centered at the origin and on the one-sheeted

hyperboloid

Hd,h = X 2
1 + · · ·+ X 2

d−1 = X 2
d + h?

Equivalently, estimate the size of∑
2m2+h≤R

rd−1(m2 + h).
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What’s Known?

In many dimensions, the circle method should be able to determine a

main term with some logarithmic savings, with better savings occurring

for very high dimension.

The two dimensional case is now uninteresting, but the three-dimensional

case is again very enigmatic. When h is a square, it is easy to come up

with a heuristic. Consider

X 2 + Y 2 = Z 2 + h2.

Then setting X = Z ,Y = h gives
√
R trivial terms. It’s natural to ask:

Are these most of the solutions, or are we missing many more?

Oh and Shaw [OS11] recently showed that when h is a square, the total

number of solutions is

C
√
R logR + O(R

1
2 (logR)

3
4 ).

So we see that most solutions are nontrivial.
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Central Idea

We return now to the standard hyperboloid X 2 + Y 2 = Z 2 + h, when h is

not necessarily a square. The key idea is that these solutions can also be

retrieved from a modular form, namely V (z) = θ2(z)θ(z).

In particular, the hth Fourier coefficient of V (z) is given by∑
m∈Z

r2(m2 + h)e−(2m2+h)πy ,

which is an exponentially weighted version of the sum we want to

understand. By taking an inner product against a weight 1
2 Poincaré

series, we can recover the Dirichlet series

〈P
1
2

h (z , s),V (z)〉 ∼
∑
m∈Z

r2(m2 + h)

(2m2 + h)s
.
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This Dirichlet series is analogous to the shifted convolution sums Z (s,w)

studied in the previous variants of the Gauss Circle Problem. And we can

try to understand it using the same methodology: spectrally expand the

Poincaré series, produce a meromorphic continuation, and then use

classical complex analytic methods (like Perron’s formula).

But now there are a host of difficulties.

• θ2(z)θ(z) is neither holomorphic nor cuspidal, both of which cause

technical difficulties.

• The Poincaré series P
1
2

h (z , s) is half-integral weight, which means

that its spectral expansion is significantly more complicated and

mysterious.

• To use the spectral expansion, we want to subtract Eisenstein series

from V (z) to make a function Ṽ (z) which is square integrable, and

it just so happens that the necessary Eisenstein series are evaluated

at a pole, so one must further adjust the methodology.
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Unfortunately, all of these problems are very technical and do not lend

themselves to a talk. But it’s worth mentioning that it is possible to

attain the meromorphic continuation for the Dirichlet series∑
m∈Z

rd−1(m2 + h)

(2m2 + h)s
.

and it is possible to use this Dirichlet series to prove a variety of results.

Of particular interest is the following (which appears in my thesis).

Theorem

The number of integer lattice points on the hyperboid H3,h and within

the ball of radius
√
R centered at the origin is

δ[h=a2]C
′R

1
2 logR + CR

1
2 + O(R

1
2−

1
44 +ε).

As a corollary, note that when h is not a square, a positive proportion of

solutions are trivial solutions!
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Takeaways

An underlying theme to this talk is that there are still very many classical

analogues of the Gauss Circle Problem which can be further understood

by choosing the correct modular form and studying its coefficients.

Further, the theory of multiple Dirichlet series and shifted convolution

sums play a tremendously important role. Because of this, a better

understanding of the spectrum of the hyperbolic Laplacian can have a

large effect on the understanding of these classical results.

Finally, isn’t it cool that the Dirichlet series∑
n≥1

Sf (n)2

ns

has a meromorphic continuation? I think it’s pretty cool.
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Thank you very much.

Before I ask for questions, I want to give Jeff

and Jill something as a token of appreciation

for making me feel so welcome into their

mathematical family.
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Thank you again.

Are there any questions?
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