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Introduction



Sizes of coefficients of cusp forms

Let f (z) =
∑
n≥1

a(n)e(nz) be a full-integer weight k cusp form on a

congruence subgroup of SL(2). The coefficients a(n) are important and

well-studied. One of the most fundamental questions we can ask is about

their size.

Theorem (Deligne)

a(n)� n
k−1

2 +ε

It is also very natural to ask about their average order. Define

Sf (X ) :=
∑
n≤X

a(n).

What do we know about Sf (X )?
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Sizes of sums of coefficients of cusp forms

Applying the Deligne bound naively to Sf (X ) leads to the bound

Sf (X )� X
k−1

2 +1+ε.

If we assume that the signs of the coefficients a(n) are roughly random

(or stronger, that they satisfy Sato-Tate), then we might expect the

bound

Sf (X )� X
k−1

2 + 1
2 +ε.

We actually expect an even better bound, analogous to the bounds in the

Gauss Circle and Dirichlet Hyperbola problems.

Classical Conjecture (still a conjecture)

Sf (X )� X
k−1

2 + 1
4 +ε.
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Recent Results Towards the Classical Conjecture

Theorem (Classical Conjecture on Average [CN64])

1

X

∑
n≤X

|Sf (n)|2 = cf X
k−1+ 1

2 + O(X k−1+ε)

Theorem (Smoothed Generalization [HKLDW15a])

1

X

∑
n≥1

Sf (n)Sg (n)e−n/X = cf ,gX
k−1+ 1

2 + O(X k−1− 1
2 +ε).

Theorem (Classical Conjecture in Short Intervals [HKLDW15b])

1

X 2/3

∑
|n−X |<X 2/3

|Sf (n)|2 � X k−1+ 1
2 .
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Iterated Sums



Iterated Sums I

While investigating the Classical Conjecture, we showed that the

Dirichlet series ∑
n≥1

Sf (n)

ns
and

∑
n≥1

Sf (n)Sg (n)

ns

each are distinguished by having meromorphic continuation to the plane.

We wondered, what would happen if we looked at iterated partial sums?

For j ≥ 0, let

S
(j+1)
f (X ) =

∑
n≤X

S
(j)
f , S1

f (X ) := Sf (X ) =
∑
n≤X

a(n)

denote the iterated partial sums associated to f .

It is natural to ask again, how large are the S
(j)
f ?
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Iterated Sums II

As far as we can tell, this is a new question. Initial investigations into the

properties of ∑
n≥1

S
(j)
f

ns

and numerical experimentation suggest further remarkable properties and

cancellation.

As a first attempt, one can S
(j)
f (X ) as a weighted sum of the individual

coefficients a(n) in the following way,

S
(j)
f (X ) =

∑
n≤X

(
X − n + j − 1

j − 1

)
a(n).

With this expression, it is easy to show that we can interpret S
(j)
f (X ) as a

particular integral transform on L(s, f ). We can also show that∑
S

(j)
f n−s has meromorphic continuation.
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An Example: j = 2

As an example, consider S
(2)
f (X ). Then

S
(2)
f (X ) =

∑
n≤X

(
X − n + 1

1

)
a(n) =

∑
n≤X

(X − n)a(n) +
∑
n≤X

a(n).

We recognize this as a sum of a standard cutoff integral transform and

an inverse-Césaro weighted cutoff integral transform,

S
(2)
f (X ) =

1

2πi

∫
(σ)

L(s, f )

(
X s+1

s(s + 1)
+

X s

s

)
ds.

In complete generality,

∑
n≥1

S
(j)
f (n)

ns
= L(s, f ) +

1

2πi

∫
(σ)

L(s − z , f )ζj(z)B(z , s − z)dz

where B(u, v) is the Beta function and ζj(z) =
∑

n

(
n+j−1
j−1

)
n−s is a sort

of binomial-coefficient zeta function.
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Limits to this Approach

It is possible to say many partial results using these techniques. For

instance, we can show that there is always at least squareroot-type

cancellation [which we’ll return to later]. But to say more, we would

want to understand the squares (S
(j)
f (X ))2. Unfortunately, the techniques

we have used so far do not extend to squares, and it’s not obvious what

the right answers should be.

For the rest of this talk, we’ll look at some of the results of our

experimentation to try to understand what the right conjectures should

be.
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Investigative Experimentation



A Note on Methodology and Reproducibility

My code and exact methodology are available on my website,

https://davidlowryduda.com. I make extensive use of the free and

open source SageMath1, an excellent resource for mathematical (and

number theoretic in particular) numerical exploration.

We now fix a choice of modular cusp form,

f (z) = ∆(z) =
∑
τ(n)qn

= q
∏
n≥1

(1− qn)24,

the classical Discriminant function, i.e./ the weight 12 cusp form on

SL(2,Z) whose coefficients are given by the Ramanujan τ function.

(We have performed similar numerical analysis on a variety of cusp forms and

they present very similar trends).

1See https://www.sagemath.org for more
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We collect the first few million coefficients of f (z). For interest, this is

what the first 50000 coefficients look like (after normalization — these

are τ(n)/n11/2).

We can see apparently random signs (and apparent conformity to

Sato-Tate).
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We compute the partial sums Sf (n) from these first few million

coefficients. At the left, we show the first 50000 partial sums Sf (n),

along with the conjectured polynomial growth lines in red and blue. On

the right, we show a log-log plot of the (absolute values of the) partial

sums Sf (n).

(Note how the Classical Conjecture seems very accurate).
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Higher Iterated Moments I

What bounds should we expect for higher iterates? Clearly

S j+1
f (X )�

∑
n≤X

|S (j)
f (n)|, leading to the estimates

S
(j)
f � X

k−1
2 + 1

4 +(j−1)+ε. But should there be further cancellation, or

perhaps remarkable cancellation as in the first moment?

It is known that {Sf (n)}n∈N changes sign regularly.

Theorem ( [HKLDW16])

For X � 1, there are at least X 1/3 sign-changes in {Sf (n)}n∈N for

n ∈ [X , 2X ].

So one might hope for repeated square-root cancellation,

S
(j)
f � X

k−1
2 + 1

4 + (j−1)
2 +ε. (In fact, we can already prove repeated

square-root cancellation). Anything further would indicate regularity and

structure in the sign-changes of the individual coefficients a(n) which is

beyond our understanding.
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Higher Iterated Moments II

Numerically, we compute S
(j)
f (n) for

several n and find best-fit growth

lines for the maximum sizes of S
(j)
f .

These results (for the first 2.5 million

n) are displayed for j ≤ 10 at right.

Notice for j ≤ 4, the data is

consistent with an iterated Classical

Conjecture — each iteration

contributes only X 1/4 or so to the

sum over length X . There continues

to be truly remarkable (and poorly

understood) cancellation.

Caveat: we have ignored the presence

of log factors. This means that the

computed b are a bit too large.

Best-fit approximations

for S
(j)
f (X )� X b

j b b − 11
2 CC

0 5.58936 0.08936 0.0

1 5.67706 0.17706 0.25

2 5.94356 0.44356 0.5

3 6.24293 0.74293 0.75

4 6.55078 1.05078 1.0

5 6.86176 1.36176 1.25

6 7.17432 1.67432 1.5

7 7.48790 1.9879 1.75

8 7.80214 2.30214 2.0

9 8.11676 2.61676 2.25

10 8.43152 2.93152 2.5
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Higher Iterated Moments III

Here are log-log plots of these iterated moment computations, with

best-fit in blue.

The next several slides are these plots in detail, with the + 1
4 iterated

Classical Conjecture in red.
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Directions for Further

Investigation



Directions for Further Investigation

It’s not yet clear what degree of cancellation we should really expect.

More numerical experimentation should lead to more precise conjectures,

but we conjecture that there is more-than-square-root cancellation in

general.

For S
(j)
f (X ) to be small for j large implies difficult to understand

regularity constraints on the sizes and sign changes of the individual

coefficients a(n) and smaller iterates. There might be a connection with

the Sato-Tate conjecture, but this connection is unexplored.

It is natural to ask about the same question for non-cusp forms, such as

those forms leading to the Gauss Circle and Dirichlet Hyperbola methods.

We have begun to investigate the approaches mentioned here for these

cases.
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Questions?
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