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Fermat’s Little Theorem and Primality

Fermat’s Little Theorem is foundational to the study of Carmichael numbers

and many classes of pseudoprimes. The theorem states that if p is a prime number,

then ap−1 ≡ 1(mod p), so long as p - a. Because gcd(p, a) = 1, we can multiply this

congruence by a to arrive at the equivalent result of ap ≡ a(mod p). Both of these

forms are used throughout the paper, as dictated by context. Though Fermat’s Little

Theorem is true for prime numbers, its converse is not true. That is, while every prime

number satisfies Fermat’s Little Theorem, not every number that satisfies Fermat’s

Little Theorem is prime. So, if an 6≡ a (mod n), we can conclude definitively that n is

composite. However, finding that an ≡ a (mod n) for some a does not prove that n is

prime.

For example, we are able to determine that 63 is composite by examining

263(mod 63) and reducing using Euler’s formula [aϕ(63) = a24 ≡ 1(mod 63)]:

263 = (224)2 · 215 ≡ 1 · 215 ≡ (26)2 · 23 ≡ (64)2 · 8 ≡ 1 · 8 6≡ 2(mod 63)

However, we can see that the converse of Fermat’s Little Theorem does not

hold true by observing the case of n = 341, which we know factors as 11 · 31:

210 ≡ 1(mod 11) =⇒ 2340 = (210)34 ≡ 1(mod 11)

230 ≡ 1(mod 31) =⇒ 2340 = (230)11 · 210 ≡ 111 · (25)2 ≡ (32)2 ≡ 1(mod 31)

2340 ≡ 1(mod 11 · 31) ≡ 1(mod 341) [by the Chinese Remainder Theorem]

Thus, 341 satisfies Fermat’s Little Theorem to the base 2, even though we know

that it is composite, and actually used its prime factorization to arrive at our result.

Bases a for which an 6≡ a(mod n) are referred to as witnesses for n. These

values provide evidence that n is composite. While most composite numbers have
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many witnesses, pseudoprimes have relatively fewer witnesses, and certain kinds of

pseudoprimes, such as Carmichael numbers, have no witnesses at all. Prime numbers

also have no witnesses, since there is no value of a for which ap 6≡ a (mod p); such a

result would violate Fermat’s Little Theorem.

Primality Tests

Primality tests are used to determine whether a given number is prime or

composite. A variety of such tests exist, most of which are beyond the scope of this

paper. Some primality tests are probabilistic, meaning that they can verify that a

number is composite, but can only provide insight into the likelihood that a number

is prime. Other primality tests are deterministic, meaning that they can conclusively

determine whether numbers are prime or composite. Fermat’s Little Theorem functions

as a probabilistic primality test, since it cannot do more than suggest that a number

is prime. Moreover, there are still composite numbers n for which an ≡ a(mod n) for

some bases a.

The existence of these numbers necessitates more rigorous primality tests. One

such test is the Rabin-Miller Test for Composite Numbers. The following definition is

excerpted from Joseph Silverman’s Friendly Introduction to Number Theory :

Let n be an odd integer and write n − 1 = 2k · q with q odd. If both of

the following conditions are true for some a not divisible by n, then n is a composite

number:

(a) aq 6≡ 1(mod n)

(b) a2i·q 6≡ −1(mod n) for all i = 0, 1, 2, ..., k − 1

The Rabin-Miller test is stronger than Fermat’s Little Theorem because 75 percent of

bases a between 1 and n−1 satisfy the above conditions for each odd composite n. This

means that there are many witnesses for every composite number, and by extension
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that no Carmichael-like numbers arise when applying this primality test.

Pseudoprimes

Broadly speaking, pseudoprimes are composite numbers that exhibit some prop-

erties of prime numbers. Various classes of pseudoprimes exist, and are described by

the prime conditions they satisfy. This paper focuses on Fermat pseudoprimes, named

as such because they satisfy Fermat’s Little Theorem. Formally, a number n is a Fer-

mat pseudoprime to base a if an ≡ a (mod n), with n a composite positive integer.

In this paper, any subsequent reference to pseudoprimes refers specifically to Fermat

pseudoprimes.

It is interesting to note that such numbers are more rare than primes to any

base a. In Chapter 5 of his Elementary Number Theory, Kenneth Rosen calculates

that there are 455, 052, 512 primes, but only 14, 884 pseudoprimes, less than 1010 to the

base 2. Despite occurring much less frequently than primes, there are still infinitely

pseudoprimes to the base 2. In fact, there are infinitely many pseudoprimes to every

base. The proof of infinitely many pseudoprimes is of particular interest because it

relies on the same underlying idea that we encountered in our study of Mersenne primes,

namely using the Geometric Series formula to draw conclusions about divisibility. [It is

also worth mentioning that Rosen’s proof of infinitely many pseudoprimes to the base

2 is very similar to Silverman’s derivation of the form of Mersenne primes from the

general form an−1]. The process of the proof itself therefore reinforces the connections

between pseudoprimes and primes.

The following proof draws on the approaches used in papers by Bernd Kreussler

and Graham Jameson. The goal is to show that n =
(a2p − 1)

(a2 − 1)
is a pseudoprime to base

a, so long as p - a2− 1. Because there are infinitely many inputs for p and a, the above

formula will generate infinitely many pseudoprimes.
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If n is a pseudoprime, it must be the case that it is both composite and odd.

To prove this for n as defined above, notice that both the numerator and denominator

are differences of squares, so the expression can be factored as:

n =
(a2p − 1)

(a2 − 1)
=

(ap − 1) · (ap + 1)

(a− 1) · (a + 1)

The Geometric Series formula shows that:

ap − 1 = (a− 1)(ap−1 + ap−2 + ... + ap + a + 1)

We can see from the above equation that (a− 1) | (ap − 1). Similar reasoning leads to

the conclusion that (a+ 1) | (ap + 1). Because
(ap − 1)

(a− 1)
and

(ap + 1)

(a + 1)
are both integers,

n is composite.

The Geometric Series formula is also helpful in showing that n is odd. In the

general case, the Geometric Series formula says the following:

xm − 1 = (x− 1)(xm−1 + xm−2 + ... + x2 + x + 1)

Taking x = a2 and m = p gives:

(a2)p − 1 = (a2 − 1)((a2)p−1 + (a2)p−2 + ... + (a2)2 + a2 + 1)

a2p − 1 = (a2 − 1)(a2p−2 + a2p−4 + ... + a4 + a2 + 1)

(a2p − 1)

(a2 − 1)
= (a2p−2 + a2p−4 + ... + a4 + a2 + 1)

n = (a2p−2 + a2p−4 + ... + a4 + a2 + 1)

Using parity conditions, if a is even, then a2p−2 + a2p−4 + ... + a4 + a2 is even

(since each term is even, and even + even = even), and a2p−2 + a2p−4 + ...+ a4 + a2 + 1

is odd. If a is odd, then a2p−2 + a2p−4 + ... + a4 + a2 is even (since each term is odd,

and odd + odd = even), and a2p−2 + a2p−4 + ... + a4 + a2 + 1 is again odd. Thus, n is

always odd.
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Finally, we must show that an−1 ≡ 1(mod n). Rearranging the given equation

for n shows that n · (a2−1) = a2p−1. We can then see that n | a2p−1 =⇒ a2p−1 ≡ 0

(mod n) =⇒ a2p ≡ 1(mod n). This suggests that finding a relationship between 2p

and n− 1 is critical to proving that an−1 ≡ 1(mod n).

Expanding n− 1 yields:

n− 1 =
(a2p − 1)

(a2 − 1)
− 1 =

(a2p − 1)

(a2 − 1)
− (a2 − 1)

(a2 − 1)

=
(a2p − 1− a2 + 1)

(a2 − 1)

=
(a2p − a2)

(a2 − 1)

Our numerator is now a variation of Fermat’s Little Theorem; multiplying both sides

of ap−1 ≡ 1(mod p) by a gives ap ≡ a(mod p), and squaring this yields a2p ≡ a2(mod

p). So with a little manipulation, Fermat’s Little Theorem implies that p | (a2p − a2).

Recall that if p | ab, p | a or p | b. In this instance, because p | (a2p − a2), and

(a2p − a2) = (n− 1)(a2 − 1), p must divide (n− 1) or (a2 − 1). However, by definition

p - (a2 − 1). Thus, p must divide (n − 1). We demonstrated previously that n is odd,

which means that n − 1 is even, so 2 | (n − 1). If 2 and p both divide (n − 1), then

2p must also divide (n− 1), and there must be some k such that 2p · k = (n− 1). We

also know from our work two paragraphs prior that a2p ≡ 1(mod n). Putting all of this

together yields:

an−1 ≡ a2p·k ≡ (a2p)k ≡ 1k ≡ 1 (mod n).

Thus, an−1 ≡ 1(mod n). This completes our proof of infinitely many pseudoprimes.

Carmichael Numbers and Korselt’s Criterion

As mentioned previously, Fermat’s Little Theorem does not always identify

composite numbers as such. Numbers for which an ≡ a (mod n) for every integer
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1 ≤ a ≤ n are known as Carmichael numbers. The smallest Carmichael number is

561, the product of 3 · 11 · 17 . It is straightforward to verify that a561 ≡ a (mod 561)

for all values of a. One can use Fermat’s Little Theorem to show that a561 ≡ a (mod

pi) for pi = 3, 11, and 17, then use the Chinese Remainder Theorem to confirm that

a561 ≡ a(mod 3 · 11 · 17) =⇒ a561 ≡ a (mod 561).

Carmichael numbers are are further defined by Korselt’s Criterion, which states

that n is a Carmichael number if and only if:

a) n is odd

b) For every prime p dividing n, p2 - n (in other words, n is the product of

distinct primes)

c) For every p dividing n, (p− 1) | (n− 1)

All numbers satisfying Korselt’s Criterion are Carmichael numbers, and all

Carmichael numbers satisfy Korselt’s Criterion. Not presented in this paper, the proof

of Korselt’s Criterion can be approached using a heuristic similar to one used in our

proof of Gaussian primes and integer primes that can be written as sums of squares.

Each component can be connected to the next in a kind of triangle, in which (a) =⇒ (b),

(b) =⇒ (c), and (c) =⇒ (a). One could easily check that our first Carmichael number

561 satisfies Korselt’s Criterion.

Korselt’s Criterion states that every Carmichael number is the product of dis-

tinct primes. In fact, Carmichael numbers are always the products of at least three

distinct primes. To understand why, consider n, the product of primes p and q. If n is a

Carmichael number, then by Korselt’s Criterion it must be that case that (p−1) | (n−1)

and (q − 1) | (n − 1), and neither p2 nor q2 divides n. The latter requirement tells us

that p 6= q, so one must be larger than the other, say q > p. Then q − 1 > p − 1,

and (q − 1) cannot divide (p − 1). We know that (q − 1) | (n − 1) − (p − 1), since
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(n−1)−(p−1) = n−p = pq−p = p(q−1). And if q−1 divides the linear combination

(n− 1)− (p− 1) and also divides n− 1, then it must divide p− 1. But we have shown

that q − 1 - p − 1. Therefore, we have a contradiction, and n cannot be a Carmichael

number.

It was not proven until 1994 that there are infinitely many Carmichael numbers,

despite the fact that mathematicians have been discovering new Carmichael numbers

since the late 19th century. One method for generating Carmichael numbers relies

on the following claim: If k is chosen such that 6k + 1, 12k + 1, and 18k + 1 are all

prime, then their product n is a Carmichael number. Recall that in order for n to be

a Carmichael number, it must satisfy Korselt’s Criterion. That is, n must be odd, and

for every prime p dividing n, it must be the case that p2 - n and p− 1 | n− 1.

The first step in the proof is to show that n is odd. If 6k + 1, 12k + 1, and

18k + 1 are all prime, then they must all be odd. This means that n is the product of

three odd numbers, and is itself odd.

Second, we must show that p2i - n. This is true since the prime factorization of

n is (6k + 1) · (12k + 1) · (18k + 1), or p1 · p2 · p3. Because of unique prime factorization,

n can only be factored as p1 · p2 · p3, so p2i cannot be a factor of n.

The third component of the proof is to show that (pi − 1) | (n− 1). To do so,

start by expanding n:

n = (6k + 1) · (12k + 1) · (18k + 1)

n = 1296k3 + 396k2 + 36k + 1

n− 1 = 1296k3 + 396k2 + 36k

n− 1 = 36k(36k2 + 11k + 1)

Next, consider each pi in turn:
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a) (p1 − 1) = 6k + 1− 1 = 6k

36k = 6 · 6k =⇒ 6k | 36k(36k2 + 11k + 1) =⇒ (p1 − 1) | (n− 1)

b) (p2 − 1) = 12k + 1− 1 = 12k

36k = 3 · 12k =⇒ 12kd | 36k(36k2 + 11k + 1) =⇒ (p2 − 1) | (n− 1)

c) (p3 − 1) = 18k + 1− 1 = 18k

36k = 2 · 18k =⇒ 18k | 36k(36k2 + 11k + 1) =⇒ (p3 − 1) | (n− 1)

Finally, if n is a Carmichael number, it must also satisfy an−1 ≡ 1 (mod n).

Because we have defined (6k + 1), (12k + 1), and (18k + 1) to be prime, we know by

Fermat’s Little Theorem that api−1 ≡ 1 (mod pi).

We want to show that an−1 ≡ 1 (mod pi), and then use the Chinese Remainder

Theorem to show an−1 ≡ 1 (mod n). Because we know that api−1 ≡ 1 (mod pi),

our task is to find a way to relate api−1 and an−1. In fact, we have already shown

that (pi − 1) | (n − 1), so we know that v · (pi − 1) = (n − 1) for some v. Then

an−1 = av·(pi−1) = (api−1)v ≡ 1v (mod pi). Thus, we have shown that an−1 ≡ 1 (mod

pi). Using the Chinese Remainder Theorem and the fact that n = p1 · p2 · p3, we can

show that an−1 ≡ 1 (mod p1 · p2 · p3) ≡ 1 (mod n). This completes the proof that n is

a Carmichael number.

Using the above method, the smallest value of k for which n is a Carmichael

number is 1. When k = 1, p1 = 7, p2 = 13, and p3 = 19. This gives n = 1729.

Applications of Pseudoprimes and Carmichael Numbers

Though there are no obvious direct applications of pseudoprimes or Carmichael

numbers, such concepts are relevant in the realm of cryptography. Public keys necessi-

tate the generation or discovery of large prime numbers (what we have been referring to

as p and q in our discussion of RSA cryptography). Finding and verifying large prime

numbers is therefore an essential prerequisite for RSA. Primality tests can be used to
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locate large primes, and understanding which composite numbers appear prime when

applying certain primality tests (i.e. when pseudoprimes might appear) is critical to

ensuring that one has correctly chosen primes for encryption. Unknowingly selecting

a pseudoprime as p or q would lead to an incorrect calculation of ϕ(m), which would

then derail the rest of the encryption computations. Despite an ostensible lack of di-

rect applications, mathematicians remain interested in finding and further examining

Carmichael numbers.
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