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Introduction

Pierre de Fermat was a French lawyer-cum-mathematician whose posthumously
published works (consisting of notes in texts) in the 17th century revealed a math-
ematical challenge. Though he boldly claimed to have proven the theorem he had
scrawled in the margins of his copy of Diophantus' Arithmetica (�I have discovered

a truly remarkable proof which this margin is too small to contain�) [9], the proof of
the theorem remained missing for centuries, despite the e�orts of mathematicians
worldwide. The famous theorem is known as Fermat's Last Theorem, and states

Theorem. xn + yn = zn has no nontrivial integer solutions for x, y, and z when

n > 2.

While it appears to be a simple theorem, its proof is anything but. It was over
three centuries before an acceptable proof was o�cially generated and announced
to the mathematical community. British mathematician Andrew Wiles was its orig-
inator, succeeding by �(1) replacing elliptic curves with Galois representations, (2)
reducing the problem to a class number formula, (3) proving that formula, and (4)
tying up loose ends that arise because the formalisms fail in the simplest degener-
ate cases� [12]. The complexity of the proof has made countless mathematicians
doubt Fermat's claim to a `truly remarkable proof which this margin is too small
to contain.' Many believe Fermat proved his last theorem for n = 4, which was
discovered later in letters of correspondence between Fermat and a colleague, then
assumed the theorem's in�nite property. Thus, either he truly did produce a proof
whose substance a physical page could not contain, bypassing 300 years of what
was essentially mathematical struggle, or he didn't; the latter, we consider more
likely.

Beginnings. Fermat, did, however produce a proof of his theorem in the case that
n = 4. What follows is the proof that he gave in the 17th century, as related by
Silverman [8].

Theorem. The equation x4 + y4 = z4 has no solutions in positive integers x, y,

and z.

As a preliminary outline, using the idea of descent, we are �writing a prime
as the sum of two smaller squares to `descend from a large solution to a small
solution.� Suppose there is a solution (x, y, z) in positive integers, and use this to
produce a new solution (X,Y, Z) in positive integers with Z < z (by descent).
By repeating this process, we end up with an in�nitely decreasing list of integer
solutions (x1, y1, z1), (x2, y2, z2), . . . with z1 > z2 > . . . However, it is impossible
to have in�nite list of decreasing positive integers because eventually, the list will
reach 0. Therefore, the only way to solve this issue is to claim that our supposition
that there is a solution (x, y, z) to x4 + y4 = z4 is false. We now proceed to the
proof.

Proof. Assume there is a solution (x, y, z) to the equation

x4 + y4 = z2.

This is a simple restatement of the problem, since the fourth power of any number
can be rewritten as the square of that number squared. We are also able to assume
that x, y, and z are relatively prime because otherwise we could just factor out any
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common factors. Therefore, if we let a = x2, b = y2 and c = z then (a, b, c) is a
primitive pythagorean triple. Remembering what we learned in lectures and earlier
chapters in the textbook about primitive pythagorean triples we are able to say
that a = x2 = st, b = y2 = s2−t2

2 , c = z = s2+t2

2 . st is equal to a square, so it must
be 1 (mod 4) or 0 (mod 4), since these are the only squares mod 4. It is also odd
by de�nition, which means st ≡ 1(mod 4). s and t are either both 1 (mod 3) or 1
(mod 4). This means s ≡ t (mod 4). Then we have the equation

2y2 = s2 − t2 = (s− t)(s+ t).

s and t are both odd and relatively prime, thus the only common factor of (s− t)
and (s + t) is 2. (s − t) is also divisible by 4 (because they are congruent mod 4
and subtracting the two would yield a result of 0 mod 4, or divisible by 4). (s+ t)
must be twice an odd number. Furthermore, we know that (s− t)(s+ t) is twice a
square. As a result, we have s + t = 2u2 and s − t = 4v2 with u and 2v relatively
prime. Using elimination and substitution, we solve for s and t in terms of u and
v,

s = u2 + 2v2, t = u2 − 2v2.

These equations can be substituted into the formula x2 = st, resulting in

x2 = u4 − 4v4

or
x2 + 4v4 = u4.

Rinse and repeat, letting A = x2, B = 2v2, and C = u2. We now have to show
that this new u in u2 is smaller than the original z, thus showing that the solu-
tions are in�nitely decreasing positive integers.(A,B,C) is a primitive pythagorean
triple. Again using our knowledge of primitive pythagorean triples, we can �nd two
relatively prime odd integers S and T such that

x = A = ST, 2v2 = B =
S2 − T 2

2
, u2 = C =

S2 + T 2

2
.

From the middle equality,

4v2 = S2 − T 2 = (S − T )(S + T ).

S and T are odd and relatively prime so the greatest common divisor of (S−T )
and (S + T ) is 2 and their product is a square, giving:

S + T = 2X2, S − T = 2Y 2

for some integers X and Y . Using elimination and substitution,

S = X2 + Y 2, T = X2 − Y 2.

Substitute into the equation for u2,

u2 =
S2 + T 2

2
=

(X2 + Y 2)2 + (X2 − Y 2)2

2
= X4 + Y 4.

We now have a new solution (X,Y, u) for our original equation x4 + y4 = z4
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z =
s2 + t2

2
=

(u2 + 2v2)2 + (u2 − 2v2)2

2
= u4 + 4v4

where z, u, and v are integers.
Clearly u < z, showing that the list of positive integer solutions to x4 + y4 = z2,

(x1, y1, z1), (x2, y2, z2), . . . with z1 > z2 > . . . is decreasing in�nitely, allowing us to
make the claim that there are no solutions because this cannot occur. �

In 1670, Fermat's son published his father's letters, this proof among them, and
in 1729, Leonhard Euler read some of Fermat's results [2]. Reading Fermat's work
sparked Euler's initial interest in number theory. Euler, along with Carl Friedrich
Gauss, proved that there is no solution for n = 3; Adrien Legendre and Lejuene
Dirichlet, n = 5 [8]. Although these proofs are complicated and quite clever, they
failed to scratch the surface of the full and �nal proof of Fermat's Last Theorem,
something that would ultimately require di�erent machinery and even entire �elds
of number theory that hadn't yet been developed.

Sophie Germaine

The full proof of Fermat's Last Theorem had to be slowly shaped over almost
300 years by the chisel of mathematical progress. A diverse and eclectic group
of mathematicians contributed to the �nal Wiles proof in 1994. Sophie Germain,
a French mathematician who received an honorary degree from the University of
Göttingen, was one these contributors. Despite women having extremely limited
academic opportunity in the 18th and 19th centuries, especially in math and science,
she was able to study at École Polytechnique in Paris and keep in correspondence
with Gauss, both accomplished by way of a male alias, Monsieur Antoine-August
Le Blanc [7, 10]. In 1823, following a prolonged fascination with Fermat's Last
Theorem and the challenge it presented, she introduced the following theorem:

Theorem. If n is an odd prime such that 2n + 1 is also a prime, the equation

xn + yn = zn has no integer solutions x, y, z of which none are divisible by n.

n is de�ned as a Germain prime if both n and 2n+1 are primes. Examples include
2, 3, 5, 11 . . . [12]. In other words, Germain's theorem states that given xn+yn = zn

where n is a Germain prime, at least one of x, y, or z is divisible by n. This allows
us to eliminate an entire class of possible solutions for n = Germain primes � those
solutions in which neither x, y, nor z is divisible by n. This leaves behind those
solutions x, y, z in which one is divisible by n. Thus, Germain e�ectively divided
the approach to Fermat's Last Theorem into two cases [6, 13]:

Case 1. xn + yn = zn eliminate solutions x, y, z in which none is multiple of n
Case 2. xn + yn = zn eliminate solutions x, y, z in which only one is a multiple

of n

Remark. Two divisible by n implies all three are divisible, which is reducible and
leaves behind either Case 1 or 2.

This generalized result on Fermat's Last Theorem showed to be important in sup-
porting later research on the topic. It was the �rst attempt that involved proving
Fermat's Last Theorem for in�nitely many primes, rather than proving it on a
case-by-case basis, which was the previous modus operandi. Germain's proof is as
follows:
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Proof. We will prove this by contradiction [3]. Suppose there is a solution (x, y, z)
to xn + yn = zn such that n - xyz. Assume x, y, and z are relatively prime, since if
not, they cancel out, forming a primitive triple. We can factor xn + yn as

(x+ y)(xn−1 − xn−2y . . .− xyn−2 + yn−1).

From this, we deduce that (x+y) and (xn−1−xn−2y . . .−xyn−2+yn−1) are both
perfect nth powers, since the factors are relatively prime (n - xyz). If there was a
prime factor k common to both (x + y) and (xn−1 − xn−2y . . . − xyn−2 + yn−1),
then x ≡ −y (mod k) so that (xn−1 − xn−2y. . . − xyn−2 + yn−1) ≡ nxn−1 (mod
k). This isn't possible because if k divides x it necessarily must divide y, which
cannot be true, and if k divides n, n has to be k and must divide zn, and therefore
x, which isn't true.

We therefore have x+ y = mn for some integer m. We also have z− y = jn and
z − x = ln. We know that for every integer β,
βn ≡ ±1 or 0 (mod 2n + 1) implies that 2n + 1 divides either x, y, or z. Say it

divides x:
2x ≡ mn + jn − ln ≡ 0 (mod 2n+ 1).
This implies that 2n + 1 must divide either m, j, or l. 2n + 1 can't divide m

or l because that would mean it has to divide y or z along with x, which isn't a
possibility. The other cases using y and z follow the same reasoning, therefore we
have a contradiction. Thus, the theorem is proven by contradiction. �

Further Developments. It is easy to see that if Fermat's Last Theorem could be
proven for all primes, the proof for all integers greater than 2 would follow closely.
Since any integer n is a product of primes, we have that p | n or n = pm and can
rewrite

An +Bn = Cn

as

(Am)p + (Bm)p = (Cm)p.

Proving Fermat's Last Theorem for all primes greater than 2 therefore seemed the
�rst logical step towards proving the in�nite property. Leopold Kronecker, Richard
Dedekind, and Ernst Kummer made important contributions in this regard.

Kronecker (1823-1891) revised many earlier ideas on L series, mostly by Dirich-
let, and applied them to the Prime Number Theorem to describe the density and
distribution of regular prime numbers to in�nity [5]. Dedekind (1831-1916) is one
of the fathers of modern algebraic number theory. He formulated the correct def-
inition of a ring of integers in a number �eld and showed the unique factorization
for di�erent integer rings [5]. Kummer (1810-1893), perhaps the most important
of the three to the history of Fermat's Last Theorem, combined the �ndings of the
other men, along with some of his own research on cyclotomic �elds, to prove Fer-
mat's Last Theorem for all regular primes, primes that he de�ned to have a certain
characteristic of divisibility in cyclomatic �elds, p > 2; an important stepping stone
towards the future of the proof of Fermat's Last Theorem. Kummer also de�ned
irregular primes as primes not proven for FLT by this method [5].

He used roots of unity and cyclotomic �elds while working in the integer ring√
−5 to prove the theorem for regular primes. The proof is eloquent, clever, and
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complicated, utilizing the most groundbreaking ideas in number theory for the time
period. Kummer originally stumbled upon Fermat's Last Theorem while attempt-
ing to generalize the law of quadratic reciprocity using cyclotomic �elds [11]. While
Kummer didn't prove FLT for all primes, he solved it for an in�nite number of reg-
ular ones; a leap of progress towards solving the in�nite characteristic of Fermat's
Last Theorem.

Elliptic Curves

Elliptic curves end up playing a pivotal role in the eventual proof of Fermat's Last
Theorem. In 1995, Andrew Wiles proved an important conjecture, the Shimura-
Taniyama conjecture, which concerns properties of elliptic curves [1]. This proof
then implied Fermat's Last Theorem. In order to talk about the proof (which,
admittedly, is over our heads), we need to take a brief detour to discuss some of
the properties of elliptic curves.

The Basics. Most of the following information about elliptic curves is from Sil-
verman's A Friendly Introduction to Number Theory [8]. An elliptic curve has an
equation of this form:

y2 = x3 + ax2 + bx+ c

One of the interesting things we can do with elliptic curves is something that we've
done repeatedly in this class. We can �nd rational points on a given elliptic curve
and then use geometry to try to �nd more of them. Let's look at an example:

E1 : y2 = x3 + 17

We can �nd out that the points P = (−2, 3) and Q = (2, 5) are on the curve by
simple trial and error. The line that connects P and Q is given by the following
equation:

y =
1

2
x+ 4.

If we substitute this in for the y in E1, we get:

0 = x3 − 1

4
x2 − 4x+ 1.

We already know x = 2 and x = -2 are roots, so we can factor this as

0 = (x− 2)(x+ 2)(x− 1

4
).

Plugging x = 1
4 into E1, we �nd a new solution ( 1

4 ,
33
8 ). Then, we can re�ect

this point onto the lower half of the curve by making the y-coordinate zero. The
process then repeats. We can do this in�nitely often for E1 to generate an in�nite
number of rational points on the curve. In 1922, L.J. Mordell proved a theorem
which states that certain elliptic curves have only a �nite list of solutions P1 =
(x1, y1), P2 = (x2, y2), ..., Pr = (xr, yr), with rational coordinates such that we can
�nd every rational solution to a given elliptic curve by �nding lines through these
pairs of points that intersect with the curve and re�ecting to get new points [8].
The curves for which this is true are the curves whose discriminant
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∆(E) = −4a3c+ a2b2 − 4b3 − 27c2 + 18abc 6= 0.

where a, b, and c are de�ned in the general equation of an elliptic curve given
above.

Complications Arise. This is an unusual situation, however. If we examine the
curve

E2 : y2 = x3 + x,

we �nd that the only rational point is (0, 0). Similarly, for

E3 : y2 = x3 − 4x2 + 16,

We only �nd four rational points: (0, 4), (0,−4), (4, 4), (4,−4). If we try to use the
geometric method described above to �nd more rational points, we can't seem to
enlarge our set of points. We call such a collection of points a torsion collection.

Torsion collections are the subject of several theorems [8]. The Nagell-Lutz
Theorem says that the coordinates of each member of a torsion collection of an
elliptic curve with a non-zero discriminant are integers. Mazur's Theorem states
that a torsion collection contains ≤ 15 points for a curve with non-zero discriminant.

Looking at Congruences. We can also analyze elliptic curves in terms of con-
gruences, a very natural extension based on topics we've explored in this class. For
instance, the number of points modulo p, which we will call Np, on the curve from
above,

E2 : y2 = x3 + x

is surprisingly interesting, given that it has only one rational point in non-modular
arithmetic. Here is a table of the number of points, Np, on E2 modulo p:

p 2 3 5 7 11 13 17 19 23

Np 2 3 3 7 11 19 15 19 23
For many of the primes, Np is pretty close to p, but there are some primes for

which there is a di�erence. In A Friendly Introduction to Number Theory, Silverman
calls the value ap = p−Np the p-defect of an elliptic curve, also known as the trace
of Frobenius. There are many interesting properties of ap, but they're not entirely
necessary for the brief overview of Wiles's proof of Fermat's Last Theorem.

Torsion Collections and Congruences. The next logical step is to combine the
previous two ideas, looking at torsion collections modulo p. Let's return to the
curve

E3 : y2 = x3 − 4x2 + 16.

Here is a table featuring values for p, Np, and ap:
p 2 3 5 7 11 13 17 19 23 29

Np 2 4 4 9 10 9 19 19 24 29
ap 0 −1 1 −2 1 4 −2 0 −1 0

A keen eye will notice that most of the values for Np appear to be congruent to
4 (mod 5), with the exceptions of p = 2 and 11. Why is this so?
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First, let's go back and look at the rational points on E3. There are four of
them: (0, 4), (0,−4), (4, 4), and (4,−4). These form a torsion collection. However,
since we're working with moduli, we can �nd new rational points modulo p. One
such point is Q0 = (1, 8), which solves the congruence y2 ≡ x3 − 4x2 + 16 (mod
17). If we �nd a line between Q0 and say, (0, 4), we can �nd a new rational point
plugging the line into the congruence and factoring. Each of the other three points
in the torsion collection works the same way, generating a new point modulo p. We
get a total of �ve new points, Q0, Q1, Q2, Q3, and Q4.

This gives us an insight into why Np is usually congruent to 4 (mod 5). We have
the 4 points from the torsion collection, plus a group of �ve other points generated
by using a new point and drawing lines connecting it to the points of the torsion
collection.
p =2 and 11, however, still cause us problems. They are called bad primes for

E3, since they lead to double or triple roots mod p. They also have the property
that they divide the discriminant of E3.

∆(E3) = −2816 =
(
−(28)

)
11.

It All Starts to Come Together. The next section really starts to approach the
fringes of our understanding. Let's look at the following expression:

Θ = T{(1− T )(1− T 11)}2{(1− T 2)(1− T 22)}2{(1− T 3)(1− T 33)}2 . . .

Let's expand this until we reach the term {(1− T 23)(1− T 253)}2. Then we get
Θ = −2T 2 − T 3 + 2T 4 + T 5 + 2T 6 − 2T 7 − 2T 8 − 2T 10 + T 11 − 2T 12 + 4T 13 +

4T 14 − T 15 − 4T 16 − 2T 17 + 4T 18 + 2T 20 + 2T 21 − 2T 22 − T 23.
Just as a refresher, here are the values for ap of E3 up to 23:
p 2 3 5 7 11 13 17 19 23

ap 0 −1 1 −2 1 4 −2 0 −1
Amazingly, the values for ap and the coe�cient of the T p term in the expanded

version of Θ line up for all p greater than 3. This is a modularity pattern for E3.
Modularity itself is too complicated to explain, but there is an upside to knowing
this terminology. Now, we have everything we need to give a basic explanation of
Wiles's proof.

A New Hope. In 1955, in a conference in Japan, the mathematician Yutaka
Taniyama began to think about the relationship between elliptic curves and modu-
lar forms, objects related to the Θ above [1]. His ideas piqued the interest of French
mathematician Andre Weil, whose name is often associated with the conjecture.
Tragically, Taniyama committed suicide in 1958, but his friend Goro Shimura con-
tinued to re�ne his conjecture, which states that every elliptic curve is related to
a modular form [8]. That is, the value of ap always follows a modularity pattern.
This was known as the Taniyama-Shimura conjecture or modularity conjecture, and
this proved to be the key in unlocking Fermat's Last Theorem.

Later, a German mathematician Gerhard Frey began to think about this rela-
tionship [1]. He consulted with experts in the �eld, including Barry Mazur and Ken
Ribet, and in 1984, he stated that the Taniyama-Shimura conjecture was related
to Fermat's Last Theorem. His idea was to take a potential solution, (a, b, c) to



FERMAT'S LAST THEOREM 9

xp + yp = zp

and analyze an associated curve [2],

Ea,b : y2 = x(x − ap)(x + bp).

Frey conjectured that this was a very strange curve. He said that its p-defects do not 
follow a modular pattern. But according to the Taniyama-Shimura conjecture, this 
was not possible. Later, Ribet was able to prove Frey's conjecture (with some help 
from Mazur). This now meant that if the Taniyama-Shimura conjecture could be 
proved, a curve associated with a solution to Fermat's vexing Diophantine equation 
could not exist. This would further imply that Fermat's Last Theorem was indeed 
true.

Wiles to the Rescue. This all set the stage for Andrew Wiles, a professor at 
Princeton University, and one of the most famous mathematical achievements of 
all time. Wiles, who had been captivated by Fermat's Last Theorem in his youth, 
now was able to put huge amounts of e�ort toward proving the Taniyama-Shimura 
conjecture [1]. He did most of the work alone, only talking to colleagues when he 
needed help and thought that they wouldn't reveal his work to the wider mathe-
matical community. Wiles's task was made easier after he realized that Fermat's 
Last Theorem would be proven if he could prove the modularity conjecture for 
semistable elliptic curves, not necessarily all elliptic curves. A semistable elliptic 
curve is a curve which, for a bad prime p greater than or equal to 3, the value of 
ap is restrained to only ±1.

In 1993 in Cambridge, England, Wiles revealed his proof to the world [1]. Its 
complexity is beyond the scope of this paper, but it was essentially a counting 
argument. He devised a way to �count� the number of modular forms and compare 
it to the number of semistable elliptic curves [1]. However, there was one problem 
with the proof, which took a year to rectify. The problem was too highbrow for 
us to understand, but the solution did involve Wiles's recognition of a connection 
to his own particular topic of expertise, Iwasawa theory (which itself is also too 
highbrow for us to understand). In 1995, Wiles was able to say that he had solved 
a problem that had eluded mathematicians for centuries.

Conclusion

The quest to prove Fermat's Last Theorem took us on a grand tour of mathe-
matical ingenuity. We saw how far elementary techniques could take us. We also 
began an exploration of elliptic curves and their wonderful properties. We saw 
that these were related in some way to modular forms, which are very complex and 
unfortunately beyond our understanding. This paper only really begins to scratch the 
surface of the ideas that went into the proof of Fermat's  Last Theorem.  Nevertheless, 
we hope that the reader has come away with some understanding of the main ideas 
involved, as well as an appreciation for the fascinating history that  was wrought 
during the three century-long quest to unravel the challenge that is Fermat's Last 
Theorem.
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