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1. Introduction

In many ways, a first semester of calculus is a big ideas course. Students learn the
basics of differentiation and integration, and some of the big-hitting theorems like
the Fundamental Theorems of Calculus. Even in a big ideas course, students learn
how to differentiate any reasonable combination of polynomials, trig, exponentials,
and logarithms (elementary functions).

But integration skills are not pushed nearly as far. Do you ever wonder why?
Even at the end of the first semester of calculus, there are many elementary func-
tions that students cannot integrate. But the reason isn’t that there wasn’t enough
time, but instead that integration is hard. And when I say hard, I mean often im-
possible. And when I say impossible, I don’t mean unsolved, but instead provably
impossible (and when I say impossible, I mean that we can’t always integrate and
get a nice function out, unlike our ability to differentiate any nice function and get
a nice function back). An easy example is the sine integral∫

sinx

x
dx,

which cannot be expressed in terms of elementary functions. In short, even though
the derivative of an elementary function is always an elementary function, the
antiderivative of elementary functions don’t need to be elementary.

Worse, even when antidifferentiation is possible, it might still be really hard.
This is the first problem that a second semester in calculus might try to address,
meaning that students learn a veritable bag of tricks of integration techniques.
These might include u-substitution and integration by parts (which are like inverses
of the chain rule and product rule, respectively), and then the relatively more
complicated techniques like partial fraction decomposition and trig substitution.

In this note, we are going to take a closer look at problems related to trig
substitution, and some related ideas. We will assume familiarity with u-substitution
and integration by parts, and we might even use them here from time to time.
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2. Motivating Trig Substitutions in Integrals

Here is a fundamental theorem, known since antiquity: if a, b, c are the sides of
a right triangle with c as the hypotenuse, then

a2 + b2 = c2,

known as the Pythagorean Theorem. As (cos θ, sin θ) is the point on the unit circle
at θ radians from the positive horizontal axis, the Pythagorean Theorem tells us
that

(cos θ)2 + (sin θ)2 = 1.

We can rewrite this as

(cos θ)2 = 1− (sin θ)2.

This might not look like much. But when we’re presented with integrals like∫ √
1− x2dx,

the difficulty is entirely because of that pesky 1 term, and using that trig identity
will allow us to get rid of the pesky 1 term.

Performing the substitution x = sin θ means that
√

1− x2 =
√

1− sin2 θ =√
cos2 θ = cos θ (here and elsewhere we could pay closer attention to signs, but we

don’t). And cos θ is much easier to handle than
√

1− x2 in an integral. Sure -
we also have the contribution from the dx term in the integral, but overall we’ve
transformed our integral into ∫

cos2 θdθ,

which we can handle.
So the algebraic intuition is that the relation cos2 θ = 1 − sin2 θ suggests a

substitution x = sin θ to let us rewrite
√

1− x2 as
√

1− sin2 θ = cos θ, which is a
simpler thing to handle. (Note that when you’re actually doing trig substitution,
it’s far more useful to draw a picture than to proceed entirely algebraically).

Two natural questions should come up. Firstly, it’s also true that sin2 θ =
1 − cos2 θ. What if we used that instead? (Answer: we get the same result - you
might try and see, and show that they’re the same).

Continuing this line of questioning, what can the other Pythagorean identities
give us? We also know that

1 + tan2 θ = sec2 θ,

which suggests that we can get rid of the pesky constant term in expressions like
1 + x2 with the substitution x = tan θ. Or, rewriting the identity as

tan2 θ = sec2 θ − 1,

we see that we can get rid of the constant term in expressions like x2 − 1 with the
substitution x = sec θ.

But this isn’t the only common relation between something that looks like 1−x2
and something that looks like x2. Can we use different substitutions to get the same
(or maybe better) results? Yes we can! And this is our main interest today.

3. A brief overview of hyperbolic trigonometry

The key property of our normal trigonometric functions cos t and sin t is that
the points (cos t, sin t) trace out the unit circle x2 + y2 = 1.

There are also hyperbolic trigonometric functions cosh t and sinh t (pronounced
“cosh” and “sinch”), with key property that (cosh t, sinh t) trace out the right half
of the unit hyperbola x2 − y2 = 1.
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It just so happens that the hyperbolic sine and hyperbolic cosine can be expressed
in terms of exponentials:

sinhx =
ex − e−x

2
(1)

coshx =
ex + e−x

2
(2)

There are many parallels between the hyperbolic trigonometric functions and
the regular trigonometric functions. Similar to how d

dx sinx = cosx and d
dx cosx =

− sinx, the hyperbolic trigonometric functions differentiate into each other. It
turns out (and you can check) that d

dx sinhx = coshx and d
dx coshx = sinhx. Very

similar, but without needing to remember the minus sign.
We also have that cosh2 x − sinh2 x = 1 (since these trace out the right unit

hyperbola). Rearranging, we see that

cosh2 x = 1 + sinh2 x.

The rest of the hyperbolic trig functions are defined analogously to the regular trig
functions:

tanhx =
sinhx

coshx

cothx =
1

tanhx

sechx =
1

coshx

cschx =
1

sinhx

A few manipulations show the other hyperbolic identities

cosh2 x− 1 = sinh2 x

and

1− tanh2 x = sech2 x.

Finally, just as with the normal trigonometric functions, there are the inverse
hyperbolic trigonometric functions (which should be prefaced with ar instead of
arc because they natural definition relates to area instead of an arc length.

4. Hyperbolic Trig Substitution

We see that the nice relations between things that look like 1 + x2, 1 − x2 and
x2−1 on the one hand and just something that looks like x2 on the other are given
by both the regular trigonometric functions and the hypergeometric trigonometric
functions. Let’s see how that goes with an example.

Example 1. Let’s integrate

∫ √
4x2 + 25dx in two ways, using both standard

trigonometric substitution and hyperbolic trigonometric substitution. First, let’s
use the standard trig functions.

We have an expression that looks like x2 + 1 that we’d love to transform into
something that looks like x2. So we let 2x = 5 tan θ, so that 4x2 + 25 = 25 tan2 θ+
25 = 25 sec2 θ, and 2dx = 5 sec2 θdθ. This gives

25

2

∫
sec3 θdθ,

which evaluates to
25

4
sec θ tan θ +

25

4
ln|sec θ + tan θ|+ C.
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If we think about the substitution in terms of the guiding triangle, then this simplifies
to ∫ √

4x2 + 25dx =
1

2
x
√

4x2 + 25 +
25

4
ln

∣∣∣∣∣
√

4x2 + 25

5
+

2x

5

∣∣∣∣∣+ C.

Implicitly we used a u-substitution and knowledge of the integral

∫
sec θdθ to

perform the above.
How does this compare to doing this with hyperbolic trigonometric functions?

Example 2. Let’s integrate

∫ √
4x2 + 25dx again, now with hyperbolic trig. We

have something of the form x2 + 1. Considering our identities above, this suggests
that we relate this to cosh2 θ = sinh2 θ + 1. In particular, we make the relation
2x = 5 sinh θ, so that 4x2 + 25 = 25 sinh2 θ + 25 = 25 cosh2 θ and 2dx5 cosh θdθ.
(Notice how similar this feels to above so far). This leads to∫ √

4x2 + 25dx =
25

2

∫
cosh2 θdθ.

We’re not as familiar with integrating arbitrary products of sinh θ and cosh θ,
but the thing that makes this reasonable is that behind everything, we just have
exponentials – and we completely understand exponentials. Here,

cosh2 θ =

(
1

2
(eθ + e−θ)

)2

=
1

4

(
e2θ + 2 + e−2θ

)
=

cosh(2θ) + 1

2
,

just like the normal cosine! (There are good reasons why these are so parallel).
Returning to our integral,∫ √

4x2 + 25dx =
25

4

∫
(cosh 2θ + 1)dθ

=
25

8
sinh 2θ +

25

4
θ + C

=
1

2
x
√

4x2 + 25 +
25

4
arsinh

(
2x

3

)
+ C.

In many ways, it feels just the same! Right around now, you might be feeling
suspicious: why is there an inverse hyperbolic trigonometric function in one and
not the other? It turns out that the arsinh expression is equal to the ln expression
in the previous answer - something that’s easiest checked by plotting their difference
in WolframAlpha. An interesting relationship is revealed.

I hope that you now see there are options, and that standard trig and hyperbolic
trig are intricately related in thorough and deep ways. More questions should come
up. If we can do a problem with normal trig, can we do it with hyperbolic trig?
(Answer: yes - maybe you should try a few to see! ) Why are these so similar?
(Good question, but not something we’re going to talk about there). Are there still
other ways of doing these problems?

To answer the last one, we’re going to deviate from trigonometry, and explore a
deeper realm.

5. Euler Substitution

Let me let you in on a little secret: most people don’t know what they’re doing
most of the time. This is true among mathematicians too, leading to something
that I like to call “The Mathematics of Wishful Thinking.” This is when you hope
that something is true, or perhaps even start under the assumption that things will
work out. . . and they do.
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This works far more often then it should. (And perhaps this is why some math-
ematicians think of math research as exploring a well-defined, beautiful landscape,
in a Platonic Form kind of way, as opposed to thinking of math research as building
structured complexes on top of models).

Let’s consider the phrase
√
ax2 + bx+ c. For really large x, we know that the

leading term of the quadratic should dominate, and then since ax2 + bx+ c ≈ ax2,
we would expect that for really large x,

√
ax2 + bx+ c ≈

√
ax2 = x

√
a. You’ll

notice that I’m implicitly assuming that a > 0 here.
This might lead you to come up with an implicit substitution. What if we

performed the substitution given implicitly by√
ax2 + bx+ c = x

√
a+ t. (3)

Squaring (noting that the ax2 terms cancel), we can solve for x and see that

x =
t2 − c

b− 2t
√
a
.

This is the actual substitution corresponding to the implicit substitution above.
And most importantly, this is a rational function in t, as is

√
ax2 + bx+ c = x

√
a+t.

So we’ve transformed these gross square roots into a rational function, just as with
the trigonometric and hyperbolic trigonometric substitutions above!

This is one of the so-called “Euler Substitutions” - which are clever “Mathematics
of Wishful Thinking” substitutions. There are a few of them - another is the implicit
substitution given by √

ax2 + bx+ c = xt+
√
c (4)

which has the advantage of being defined whenever c > 0, with no need for a > 0.
You can go and solve for x and find the explicit transformation here too.

Example 3. Let’s perform the integral

∫ √
4x2 + 25dx again, this time with Eu-

ler’s First Substitution as in 3.
Here, we are interested in writing

√
4x2 + 25 = 2x+t, or equivalently (but solving

for x), x =
t2 − 25

−4t
. From this last line, we see that

dx =

(
2t

−4t
− t2 − 25

−4t2

)
dt =

(
−1

4
+
−25

4t2

)
dt

Altogether, this gives that∫ √
4x2 + 25dx =

∫
(2x+ t)

(
−1

4
+
−25

4t2

)
dt

=

∫ (
t2 − 25

−2t
+ t

)(
−1

4
+
−25

4t2

)
dt

=

∫ (
t

2
+

25

2t

)(
−1

4
− 25

4t2

)
dt

=

∫ (
−1

8
t− 25

4t
− 252

8t3

)
dt

= − 1

16
t2 − 25

4
ln|t|+ 252

16t2
+ C

Recalling that
√

4x2 + 25 = 2x+ t, we see that t =
√

4x2 + 25− 2x. So the final
answer is

−1

16

(√
4x2 + 25− 2x

)2
− 25

4
ln|
√

4x2 + 25− 2x|+ 252

16

1(√
4x2 + 25− 2x

)2 + C.
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This is not obviously like the others. Both trigonometric substitutions gave an-
swers with the “biggest” contribution looking like x

√
4x2 + 25, which is a lot like

x2 as x gets really big. Showing that this is the same in this case is a really good
exercise with Taylor series.

While Euler Substitution might seem a bit eccentric, it’s also exciting. We
did not need to pass through transcendental functions to do this utterly ordinary
integral. Perhaps more exciting, we got two expressions that are not obviously
equal. This is often a good source of inspiration - why are these the same? What
can we discover about one by understanding the other?

6. Concluding Remarks

We’ve investigated three different techniques of resolving integrals containing
problematic square roots of quadratics, like

√
ax2 + bx+ c. The techniques we’ve

presented are in some ways similar, and in some ways dissimilar. But something
true to all of them is that they are very general.

In fact, given any rational function in x,
√
ax2 + bx+ c for a fixed a, b, c, we can

use any of these three techniques to reduce the problem of finding its antiderivative
to finding the antiderivative of a rational function in x. And in principle, we can find
the antiderivative of any rational function in x using partial fraction expansions.

So these are three different ways of solving an entire class of functions∫
R(x,

√
ax2 + bx+ c)dx

for rational functions R(u, v). (Here, I’m using rational function to mean a poly-
nomial in u and v divided by another polynomial in u and v. Yes, these are

multivariate polynomials. For example, u
2+uv+v
uv+4uv3 is a rational function in u and v).

In my math 170 class at Brown, this marks one of the few complete families of
functions we can integrate. We can also integrate p(x)dx for generic polynomials
p(x), R(x)dx for generic rational functions R(x), and p(cosx, sinx)dx for generic
bivariate polynomials p(x, y).

For what it’s worth, we are only a small step away from the techniques involved

in the integrals

∫
R(cosx, sinx)dx of generic rational functions R(u, v) in sinx and

cosx. These are also reduced to the evaluation of single variable rational functions,
ultimately leading to more partial fractions style integrals. ( This is called the
Weierstrass substitution, and takes the form t = tan θ

2 if you’re interested).
So integration is hard, and there is often not a single, cannonical best way

to do integrals. If there are any questions, feel free to comment below. This
note was typed in the TEXtypesetting language, hosted on the Wordpress site
davidlowryduda.com, and displayed with MathJax. This can also be found in pdf
note form, and the conversion from note to Wordpress is done using a customized
version of latex2wp that I call mse2wp, located at github.com/davidlowryduda/

mse2wp.

Brown University Mathematics

E-mail address: djlowry@math.brown.edu

davidlowryduda.com
github.com/davidlowryduda/mse2wp
github.com/davidlowryduda/mse2wp

	1. Introduction
	2. Motivating Trig Substitutions in Integrals
	3. A brief overview of hyperbolic trigonometry
	4. Hyperbolic Trig Substitution
	5. Euler Substitution
	6. Concluding Remarks

