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FtYou writes

Hello everyone ! There is a concept I have a hard time getting my head
wrap around. If you have a Vector Space V and a subspace W, I under-
stand that you can find the least square vector approximation from any
vector in V to a vector in W. And this correspond to the projection of
V to the subspace W. Now , for data fitting ... Let’s suppose you have a
bunch of points (xi, yi) where you want to fit a set a regressors so you can
approximate yi by a linear combination of the regressors lets say ( 1, x, x2
... ). What Vector space are we talking about ? If we consider the Vector
space of function R -¿ R, in what subspace are we trying to map these
vectors ? I have a hard time merging these two concepts of projecting to
a vector space and fitting the data. In the latter case what vector are we
using ? The functions ? If so I understand the choice of regressors ( which
constitute a basis for the vector space ) But what’s the role of the (xi,yi)
?

I want to point out that I understand completely how to build the matrices
to get Y = AX and solving using least square approx. What I miss is the
big picture. The linear algebra picture. Thanks for any help !

We’ll go over this by closely examining and understanding an example. Suppose we
have the data points (xi, yi) 

(x1, y1) = (−1, 8)

(x2, y2) = (0, 8)

(x3, y3) = (1, 4)

(x4, y4) = (2, 16)

,

and we have decided to try to find the best fitting quadratic function. What do we
mean by best-fitting? We mean that we want the one that approximates these data
points the best. What exactly does that mean? We’ll see that before the end of this
note - but in linear algebra terms, we are projecting on to some sort of vector space
- we claim that projection is the “best-fit” possible.

So what do we do? A generic quadratic function is f(t) = a + bt + ct2. Intuitively,
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we apply what we know. Then the points above become
f(−1) = a− b + c = 8

f(0) = a = 8

f(1) = a + b + c = 4

f(2) = a + 2b + 4c = 16

,

and we want to find the best [abc] we can that “solves” this. Of course, this is a
matrix equation: 

1 −1 1
1 0 0
1 1 1
1 2 4


a
b
c

 =


8
8
4
16

 .

And so you see how the algorithm would complete this. But now let’s get down the
“linear algebra picture,” as you say.

We know that quadratic polynomials f(t) = a + bt + ct2 are a three dimensional
vector space (which I denote by P2) spanned by 1, t, t2. We know we have four data
points, so we will define a linear transformation A to be the transformation taking
a quadratic polynomial f to R4 by evaluating f at −1, 0, 1, 2 (i.e. the xi). In other
words,

A : P2 −→ R4

where

A(f) =


f(−1)
f(0)
f(1)
f(2)

 .

We interpret f as being given by three coordinates, a, b, c ∈ R3, so we can think of
A as a linear transformation from R3 −→ R4. In fact, A is nothing more than the
matrix we wrote above.

Then a solution to

ATA

a
b
c

 = AT


8
8
4
16


is the projection of the space of quadratic polynomials on R4 (which in this case is
the space of evaluations of quadratic polynomials at four different points). If f ∗ is
the found projection, and I denote the yi coordinate vector as y∗, then this projection
minimizes

||y∗ − Af ∗||2 = (y1 − f ∗(x1))
2 + . . . + (y4 − f ∗(x4))

2,
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and it is in this sense that we mean we have the “best-fit.” (This is roughly interpreted
as the distances between the yi and f ∗(xi) are minimized; really, it’s the sum of the
squares of the distances - hence “Least-Squares”).

So in short: A is a matrix evaluating quadratic polynomials at different points. The
columns vectors correspond to a basis for the space of quadratic polynomials, 1, t, t2.
The codomain is R4, coming from the evaluation of the input polynomial at the four
different xi. The projection of the set of quadratic polynomials onto their evaluation
space minimizes the sum of the squares of the distances between f(xi) and yi.

Does that make sense?

3


