
A Friendly Into to Sieves with a Look Towards
Recent Progress on the Twin Primes Conjecture

Notes from a Talk

David Lowry-Duda
djlowry@math.brown.edu

http://davidlowryduda.com

January 22, 2014

This is an extension and background to a talk I gave on 9 October 2013 to the
Brown Graduate Student Seminar, called ‘A friendly intro to sieves with a look to-
wards recent progress on the twin primes conjecture.’ During the talk, I mention
several sieves, some with a lot of detail and some with very little detail. I also dis-
cuss several results and built upon many sources. I’ll provide missing details and/or
sources for additional reading here.

Furthermore, I like this talk, so I think it’s worth preserving.

1 Introduction

We talk about sieves and primes. Long, long ago, Euclid famously proved the infini-
tude of primes (≈ 300 B.C.). Although he didn’t show it, the stronger statement that
the sum of the reciprocals of the primes diverges is true:∑

p

1

p
→∞,

where the sum is over primes.
Proof: Suppose that the sum converged. Then there is some k such that

∞∑
i=k+1

1

pi
<

1

2
.

Suppose that Q :=
∏k

i=1 pi is the product of the primes up to pk. Then the integers
1+Qn are relatively prime to the primes in Q, and so are only made up of the primes
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pk+1, . . .. This means that

∞∑
n=1

1

1 +Qn
≤
∑
t≥0

(∑
i>k

1

pi

)t

< 2,

where the first inequality is true since all the terms on the left appear in the middle
(think prime factorizations and the distributive law), and the second inequality is
true because it’s bounded by the geometric series with ratio 1/2. But by either the
ratio test or by limit comparison, the sum on the left diverges (aha! Something for
my math 100 students), and so we arrive at a contradiction.

Thus the sum of the reciprocals of the primes diverges. ♦
I learned of this proof from Apostol’s Introduction to Analytic Number Theory,

and although I’ve seen many proofs since, this is still my favorite.
This turned out to be a pretty good proof technique. In the 1800’s, Dirichlet

and others proved the Prime Number Theorem, and the more sophisticated prime
number theorem for primes in arithmetic progressions (sometimes called Dirichlet’s
Theorem). The first says that the number of primes less than x, which I’ll denote by
π(x), is asymptotically x

log x
. The second says that as long as gcd(a, b) = 1, then the

arithmetic progression a, a+ b, a+ 2b, a+ 3b, . . . contains infinitely many primes.
Sort of similar to before, a stronger statement is true:∑

a+bk=p

1

a+ bk
→∞,

where the summation is just over those elements where a + bk is prime. Further,
Dirichlet showed that each progressions mod a have the same asymptotic, and so
primes are very equidistributed.

As an aside, the primes are very equidistributed in the sense that the
decimal 0.23571113 . . ., gotten from concatenating all the primes, is a
normal number, meaning that every finite pattern of digits appears in
the decimal, and every pattern of the same length occurs with essentially
the same density. So no digit, digits, or pattern of digits appear any more
often than any other digit, digits, or pattern of digits. This number is
called the Copeland-Erdös constant.

A few decades later, in 1859, Riemann wrote and published his famous Memoir.
In this, he introduced what we now call the Riemann zeta function ζ(s) =

∑
n≥1

1
ns

,
gave its analytic continuation and functional equation, and created the field of analytic
number theory. This matters to me, because I am an analytic number theorist, and
it’s good to know your roots.

Perhaps these methods and developments are what inspired Viggo Brun to try to
analyze twin primes around the start of the 20th century. Twin primes are pairs of
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primes that are 2 apart. For instance, 3 and 5 are twin primes, as are 11 and 13,
and so on. We know there are infinitely many primes - are there infinitely many twin
primes? What about “cousin” primes (pairs of primes of the form p, p + 4) or “sexy
primes” (p, p + 6)? Or what about bigger sets of primes. Are there infinitely many
trios of primes p, p+ 2, p+ 4, or p, p+ 2, p+ 6?

Conjecture 1 (Twin Primes Conjecture) There are infinitely many pairs of twin
primes p, p+ 2.

Brun wanted to analyze the sum ∑
p twin

1

p
,

perhaps hoping that the sum would be infinite and thus showing that there are in-
finitely many twin primes. Brun successfully analyzed this sum, but he did not
manage to prove or disprove the Twin Primes Conjecture. Instead, he showed that∑

p twin

1

p
≈ 1.9 <∞.

This sum is finite, so if there are infinitely many twin primes, then there aren’t too
too many of them. On the other hand, just because the sum is finite doesn’t mean
there are only finitely many twin primes. For example,∑

n≥1

1

n2
=
π2

6
,

a finite number, and there are clearly infinitely many squares. (Showing this equality
is true is called Basel’s problem and it is a classic problem in a complex analysis
class).

Brun’s result is impressive, but it’s not sufficient to say anything about the infini-
tude of twin primes. For a long time, it was widely thought that no one was getting
any closer to proving something about the infinitude of twin primes than Brun was
over a century ago. But then in 2013, Yitang Zhang broke the stalemate by showing
that there are infinitely many primes of the form p, p+ 2k for some fixed k (although
he didn’t prove what that k was). Shortly afterwards, James Maynard showed that
there are infinitely primes of the form p, p + a, p + b for some fixed a, b (in fact, he
proved a much stronger result stating that there are infinitely many prime families of
many types).

The most up-to-date results and progress is being carried out by Terry Tao and
the Polymath8 massively collaborative mathematics project.
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2 The Sieve of Eratosthenes

Brun, Zhang, Maynard, and Polymath8 all worked with sieves. In some ways, math
sieves are just like sieves you might see in a kitchen: they filter some stuff out, and
hopefully let what you want through. They don’t work perfectly. Some extra stuff
usually gets through, or you don’t get everything you want, or (most likely) you get
a little bit of both.

Many have heard of a sieve used in mathematics. Around 250 BCE, Greek poly-
math and librarian Eratosthenes of Cyrene developed a sieve to find and count primes.
In his honor and memory, we call it the Sieve of Eratosthenes. To understand his
sieve, let us first try to find and count primes ourselves.

The naive method would be to use “trial division” on each number to check if it’s
composite. If not, then it’s a prime. Then we go to the next number. For example,
we might wonder if 57 is prime. Is it divisible by 2? No. Is it divisible by 3? Yes!
Oh - so it’s not prime. Then we might check 58, then 59, and so on.

This can be improved by checking only if a number n is divisible by primes p ≤
√
n,

since any composite number has at least one prime factor less than its square root.
This would save time checking 59, for example, since you would check 2, 3, 5, and 7,
and since it’s not divisible by any of those, we know it’s prime.

We can save a little more time by noticing that we can skip every even number
after 2, since they must be divisible by 2. If we think about it, we see we can skip
every multiple of 3 after 3, too, for the same reason. They must be divisible by 3.
And every multiple of 4 after 4 - but since 4 is a multiple of 2, this step is redundant.

These are the insights that led to the Sieve of Eratosthenes. To find the primes
up to 25, we first write down the potential numbers,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25.

Since 1 isn’t prime, cross it out. (1 is going to be a pain today, as it doesn’t quite fit
all the patterns)

6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25.

The next number on the list will be prime. So 2 is prime. We’ll underline it. Then
cross out all multiples of 2.

6 1, 2, 3, 6 4, 5, 6 6, 7, 6 8, 9, 6 10, 11, 6 12, 13, 6 14, 15, 6 16, 17, 6 18, 19, 6 20, 21, 6 22, 23, 6 24, 25.

Now we repeat. The next number on the list will be prime, and it’s multiples should
be crossed out.

6 1, 2, 3, 6 4, 5, 6 6, 7, 6 8, 6 9, 6 10, 11, 6 12, 13, 6 14, 6 15, 6 16, 17, 6 18, 19, 6 20, 6 21, 6 22, 23, 6 24, 25.

Since
√

25 = 5, and the next element on the list is 5, this is our last step. We underline
5, cross out any multiples of 5 that are left, and everything left must be a prime. So
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we get

6 1, 2, 3, 6 4, 5, 6 6, 7, 6 8, 6 9, 6 10, 11, 6 12, 13, 6 14, 6 15, 6 16, 17, 6 18, 19, 6 20, 6 21, 6 22, 23, 6 24, 6 25.

The primes are 2, 3, 5, 7, 11, 13, 17, 19, 23. In particular, there are 9 primes here, and
6 primes bigger than 5 (the largest prime we used to find them).

This is must faster than trial division. And this is the plan of the Sieve of Er-
atosthenes. A different way of viewing the Sieve of Eratosthenes is that if we know
the primes up to 5 (which we do), then then we find the primes up to 52 = 25 very
quickly. If we wanted, we could repeat the process, using the primes up to 25 to get
the primes up to 252 very quickly, and so on. So we can find the primes between

√
n

and n very quickly.
This is a form of the Sieve of Eratosthenes that gives the primes explicitly, but

what if we were just interested in counting the number of primes (just as we wonder if
there are infinitely many twin primes, but don’t necessarily care to find all of them)?
Let’s look at our argument again with the Principle of Inclusion and Exclusion in
mind.

Let π(x, z) denote number of integers less than or equal to x that are coprime to
primes less than or equal to z, or rather

π(x, z) = # {n ≤ x : p 6 | n ∀p ≤ z} .

So we want to try to figure out π(n,
√
n) using the Sieve of Eratosthenes. First,

let’s look at our example to find π(25, 5). We start with 25 numbers. We first get
rid of multiples of 2. How many multiples of 2 are there? There are b25/2c = 12
multiples of 2 here (we are counting 2 itself!). The next prime to remove is 3. How
many multiples of 3 are there? There are b25/3c = 8 multiples of 3. But wait, we’ve
double counted a few things.

For example, we’ve counted the number 6 twice, since it is both a multiple of 2 and
3. To not overcount, let’s put back in those multiples of both 2 and 3, or rather let’s
add in the multiples of 6. How many multiples of 6 are there? There are b25/6c = 4.
Then we take out the multiples of 5: b25/5c = 5. But we’ve again overcounted, now
by multiples of 10 = 2 · 5 and multiples of 15 = 3 · 5. So we add back in b25/10c and
b25/15c = 1. In principle, we would need to add back in multiples of 2 · 3 · 5 = 30,
but since there are none less than 25, that’s not necessary.

By the idea of the Sieve of Eratosthenes, this should be enough to eliminate all
the composites between 5 and 25, and since we’ve also eliminated the primes up to
5, we should be left with π(25, 5).

All together, this gives us

25− 12− 8− 5 + 4 + 2 + 1− 0 = 7,

so we expect that π(25, 5) = 7. But it happens to be that we counted the number of
primes greater than 5 and less than 25 above, and we got only 6. Why do we get 7
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instead? Well, it’s an annoying thing: we never took out 1 from the list of numbers
when we were calculating π(25, 5). On the one hand, this is a bit silly. On the other
hand, 1 is technically coprime to all primes less than 5, and so should be included in
this phrasing of the definition. Regardless, it turns out that it makes formulas easier
to write down and consider if we include 1 in this count, so that 1 is almost a “prime”
today.

Number theorists have a function that makes writing this inclusion-exclusion
counting argument easier. It’s called the Möbius function µ(n), which is given by

µ(n) =


1 n = 1

(−1)k = (−1)ν(n) n = p1p2 . . . pk

0 p2 | n for any p

.

In other words, µ(n) is 0 if any prime divides n twice, and otherwise if (−1) raised
to the number of different primes dividing n. ν(n) happens to be another number
theory shorthand, and it stands for the number of different primes dividing n.

So ν(p) = −1 for any prime p, ν(p1p2) = 1 for any two distinct primes p1, p2, and
so on. One final piece of notation: let P (z) =

∏
p≤z p be the product of the primes

up to z.
Then our Sieve of Eratosthenes style argument above can be written succinctly as

π(25, 5) =
∑
d|P (5)

µ(d)

⌊
25

d

⌋
.

(If this is your first time seeing some of this notation, or if you don’t believe it, I
encourage you to write this expression out cleanly. You’ll see that it’s the same as
the expression we have above giving 7). This argument easily generalizes, so that

Theorem 2 (Original Counting Sieve of Eratosthenes) Suppose π(x, z) is the
number of integers up to x that are not divisible by primes up to z. Let P (z) is the
product of the primes up to z. Then we have

π(x, z) =
∑
d|P (z)

µ(d)
⌊x
d

⌋
. (1)

Clearly this is not the same form in which Eratosthenes would have presented
this result, but the heart of it is as it was millennia ago. We are using multiplicative
properties of integers (divisibility and properties related to the Möbius function in
this case) to sift out particular numbers (smaller primes and all composites) and to
isolate a set (larger primes) that we are interested in.
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3 More General Sieves

Let us do as mathematicians tend to do and generalize. Let me be the first to say that
what we will do is a bit technical and not obvious. But the key intuition is the same
as in the Sieve of Eratosthenes. One great thing about the Sieve of Eratosthenes is
that there is no error - it is an exact counting tool. But for more interesting or elusive
subsets of the integers, we won’t be able to be so precise. By giving up exactness, we
will be able to estimate the sizes of a bigger family of subsets of the integers and not
just large primes.

In what follows, we will be generalizing the Sieve of Eratosthenes. We will be
introducing a good amount of notation. For clarity, we’ll write down what these
correspond to in the Original Sieve of Eratosthenes in blue.

Suppose we have a certain subset A of the natural numbers (A = [1, . . . , x] in
π(x, z)), and P is a set of primes that we’re going to use in our sieve (P = P (z)).
So far, I think these are totally natural thought paths. For each prime in P , suppose
we have a distinguished set of residue classes. When I mean distinguished set, I just
mean that there are some residue classes that we want to sieve out by (We cared about
getting rid of those numbers that were divisible by some p ≤ z, so for each prime
the distinguished residue class in the standard Sieve of Eratosthenes was 0 mod p).
This may be a bit confusing now, but we’ll do a nontrivial example in a moment that
should make this more clear.

For each prime, let ω(p) denote the number of distinguished residue classes for
that prime (ω(p) = 1 for all p in Eratosthenes), and let Ap denote those elements
in A that are in any of the distinguished residue classes for the prime p, or rather
Ap = {a ∈ A : a ∈ distinguished residue class mod p} (Ap is the set of numbers up
to x divisible by p, so |Ap| = bx/pc).

Let’s take a moment here to examine something. In the Sieve of Eratosthenes,

|Ap| =

⌊
x

p

⌋
=

⌊
x

p

⌋
ω(p). But the floor function is not a nice function - it’s not

multiplicative and sometimes has erratic behavior. On the other hand,

⌊
x

p

⌋
≈
(
x

p

)
,

and in fact isn’t really more than 1 off. This is much better behaved than the floor

function. All together, |Ad| = x

(
ω(p)

p

)
+ (small error).

In our generalization, we want |Ap| to be roughly equal to a multiplicative function

times
ω(p)

p
. This is an assumption under this sieve. Assuming this is true, write

|Ap| = X(x)
ω(p)

p
+ (small error) for some function multiplicative X(x). (X(x) = x).

For d square-free, let Ad :=
⋂
p|d ap and ω(d) =

∏
p|d ω(p) (So Ad denotes integers

divisible by every prime dividing d, useful in the inclusion/exclusion argument, and
ω(d) = 1).
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Finally, call S(A,P ) = |A \
⋃
p∈P Ap| the number of elements in A that are

not in any of the Ap, or equivalently not in any distinguished residue class for any
prime (S(A,P (z)) = π(x, z)). Then we are ultimately counting, or rather estimating,
S(A,P ) - and it feels very “sieve-like” in that we have our elements A and we are
taking out elements Ap based on their multiplicative properties.

Theorem 3 (Generalized Sieve of Eratosthenes) With A,P, ω(p), ω(d), Ap, Ad,

and S(A,P ) as above, and assuming that |Ad| = x

(
ω(p)

p

)
+ (small error), we have

S(A,P ) = X(x)
∏
p∈P

(
1− ω(p)

p

)
+O(error), (2)

where the error term is beyond the scope of this talk and paper - any analytic number
theory book including sieve theory will mention it. One reference would be Iwaniec-
Kowalski [5].

Proof:[sketch] Although it might not feel like it, this result is conceptually no differ-
ent than the earlier Sieve of Eratosthenes we discussed. The key central bit is under-
standing that since everything is multiplicative, we can still use inclusion/exclusion.
Then if we slightly abuse notation and let P denote the product of the primes we’re
interested in, we have

S(A,P ) =
∑
d|P

µ(d)|Ad| =
∑
d|P

µ(d)

(
X(x)

ω(d)

d
+ (error)

)
.

Ignoring the error terms (which sieve theorists would say is the most important term
to pay attention to), we see that∑

d|P

µ(d)X(x)
ω(p)

p
= X(x)

∑
d|P

µ(d)
ω(d)

d
.

A basic fact from multiplicative number theory is that if f is a multiplicative function,
then

∑
n≥1 f(n) =

∏
p(f(1) + f(p) + f(p2) + f(p3) + . . .), which is really just the fact

that integers factor uniquely in disguise. As µ(d)
ω(d)

d
is multiplicative, we expect

the same here (roughly). Then since µ(p) = −1, we get the minus sign in the final

answer, and as µ(p2) = 0 (and all higher powers), we get only

(
1− ω(p)

p

)
per prime

in the final answer. The interested follower should try to do a more careful analysis,
actually paying attention to the error terms along the way, and compare with a
reference such as Iwaniec-Kowalski [5]. It’s much easier to assume the error terms
have a multiplicative bound. ♦

Let’s immediately hop into an example application: estimating the number of
twin primes.
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Theorem 4 The number of primes p such that p+2 is also prime is O

(
x(log log x)2

(log x)2

)
.

Proof: Let A = [1, . . . , x], and let P = P (z), where I’ll specify z later, but not

including 2. So P =
∏

2<p≤z

p. For each p, distinguish

{
0 mod p

−2 mod p
,

so that ω(p) = 2 and ω(d) = 2ν(d) (where ν(d) is the number of prime divisors of d).
(We exclude the prime 2 so that it makes easy sense to talk about −2 mod p). Then
Ap includes numbers divisible by primes or 2 less than multiples of primes. A big
insight here is that if p, p+2 is a pair of twin primes greater than z, then since neither
p nor p+ 2 is a multiple of a smaller prime, and since p is not 2 less than a multiple
of a smaller prime (as that would mean that p+ 2 is a multiple of a smaller prime), p
will be counted in S(A,P ). Now, p+ 2 might not, and many other things might get
in that shouldn’t. But since every lower twin prime greater than z is in S(A,P ), we
have that the number of twin primes in [z, x] is bounded above by 2S(A,P ). So this
sum counts what we want.

Then |Ap| = x
ω(p)

p
+ (error), as roughly 2 of every p numbers will be included.

Then |Ad| = x
2ν(d)

d
+ (error).

Altogether, this means that

S(A,P ) = x
∏

p|P (z),p 6=2

(
1− 2

p

)
+O(error).

As (1− 1
p
)2 = (1− 2

p
+ 1

p2
) > (1− 2

p
), we get that

S(A,P ) < x
∏

p|P (z),p 6=2

(
1− 1

p

)2

+O(error).

It just happens Mertens analyzed the partial product
∏

p<z

(
1− 1

p

)2
and found that

∏
p<z

(
1− 1

p

)2

≈
(
e−γ

log z

)2

,

where γ is the Euler-Mascheroni constant. Using this and a precise knowledge of how
the error terms behave in the Sieve of Eratosthenes would lead one to choose z so

that log z =
log x

5 log log x
to minimize the bound while maintaining a sufficiently small
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error to be meaningful. Notice that this means that z < x1/5, and so this shows that
the number of twin primes in the range [x1/5, x] is bounded by S(A,P ), and

S(A,P ) = O

(
x(log log x)2

(log x)2

)
.

Even though we omitted the twin primes in [1, x1/5], this doesn’t affect the asymp-
totic. If we assumed that every number in [1, x1/5] was a twin prime, there would be

O
(
x(log log x)2

(log x)2

)
+ x1/5 = O

(
x(log log x)2

(log x)2

)
. And thus if π2(x) represents the number of

twin primes up to x, then

π2(x) = O

(
x(log log x)2

(log x)2

)
. (3)

This concludes the proof. ♦

Notice that this proof didn’t really ever rely on the exact residue classes except to
identify twin primes. If we were to distinguish 0 mod p and −4 mod p (and omit the
prime 3 as well), this proof would carry through entirely. This gives us the corollary

Corollary 5 If π2n(x) represents the number of pairs of primes p, p + 2n up to x,
then

π2n(x) = O

(
x(log log x)2

(log x)2

)
.

We can use this result to prove Brun’s Theorem (although in a very different way
than Brun proved it himself).

Theorem 6 ∑
p twin

1

p
<∞.

Proof: If I were to summarize this proof with a single phrase, it would be “partial
summation.”

For those unfamiliar with partial summation (sometimes also called summation
by parts), it is integration by parts with Riemann-Stieltjes integrals as opposed to
normal Riemann integrals; or alternatively it is integration by parts with more general
measures than the typical Lebesgue/Euclidean measure.

For two relatively well-behaved functions f, g, we can think of

∫ b

a

fdg as the limit

of the sums
∑
f(xi)(g(xi+1)− g(xi)), which gives a sort of weight to f based on how

quickly g is changing. If g is changing rapidly, then those values of f matter a lot.
If g is constant, then the integral is 0. Notice that when g(x) ≡ x, this is exactly a
Riemann integral.
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It turns out that integration still works perfectly well with all the normal bells
and whistles. Most importantly to us, we can still use integration by parts. With
this in mind, we have∑

p twin

1

p
=
∑
n≥1

1

n
(π2(n+ 1)− π2(n)) =

∫ ∞
1

1

bxc
d(π2(x)) =

=

[
π2(x)

x

]∞
1

−
∫ ∞
1

π2(x)d

(
1

bxc

)
,

and the first term is 0 because on the one hand, π2(1) = 0, and on the other hand we

know that
π2(x)

x
→ 0 from the asymptotic we proved earlier. We were able to turn

from sum to integral’s measure changes at discrete steps.
So we have

−
∫ ∞
1

π2(x)d

(
1

bxc

)
= −

∑
n≥1

π2(n)

(
1

n+ 1
− 1

n

)
=
∑
n≥1

π2
n2
,

where we changed from integral to sum by writing down how the integral changes at
those discrete points where it takes value.

Notice that
π2(n)

n2
is a positive, decreasing function with limit 0. Thus we can

apply the first-year calculus integral test of convergence (two things for my math

100 students!) to see that this sum converges if and only if the integral

∫ ∞
1

π2(t)

t2
dt

converges. But∫ ∞
1

π2(t)

t2
dt�

∫ ∞
1

(log log t)2

t(log t)2
dt�

∫ ∞
1

dt

t(log t)1.5
<∞,

by standard u-substitution. Thus
∑
p twin

1

p
<∞. ♦

Brun successfully proved this theorem, and since the sum is finite, we call the value
of the sum Brun’s constant. The convergence of this sum is extremely slow, so esti-
mates of it are relatively poor and conjectural. But we know that it’s approximately
1.9 - far less then the infinity that some might have hoped for.

There is an interesting and amusing story unifying some of the con-
stant’s we have seen here today. In 2011, Google was bidding on the
acquisition of a large set of patents from Nortel. Google’s first real
bid was $1,902,160,540, the first 10 digits of Brun’s constant. When
outbid, Google upped their bid to $2,614,972,128, the first 10 digits of
Merten’s second constant (earlier we mentioned Merten’s theorem, which
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is very closely related). When outbid again, Google upped their bid to
$3,141,592,653, the first 10 digits of π. It turns out that Google lost the
auction (it went for about $4.5 billion), and they’ve likely regretted it
since.

So we have shown there are “few” twin primes. In fact, we expect that π2(x) ≈
cx

log2(x)
for a particular constant c, and numerical evidence supports this guess. This

means that what we have from the Sieve of Eratosthenes is a gross overestimate - we
really let too much in. But getting better estimates is hard. One possible strategy
would be to sieve through more of the primes up to x - since we only go up to x1/5

or so, many non-primes get though the sieve. But this ruins our error estimates and
actually worsens our bound. What we really would like is a lower bound instead of
an upper bound - but this is largely beyond the Sieve of Eratosthenes.

Brun actually developed his own sieve (now called Brun’s Sieve) to approach the
twin primes problem, and his sieve can give lower bounds. You might wonder why
Brun developed his own sieve rather than using the much older and established Sieve
of Eratosthenes. The answer lies hidden in the error analysis that we’ve omitted from
this discussion. Some of the most technical parts rely on results that are younger
than Brun. In fact, almost no one touched sieves between Eratosthenes and Brun -
there was no interest. But Brun managed to breathe life into the field by giving it
new ideas and promise.

With Brun’s Sieve, one can prove that there are infinitely many pairs p, p + 2
where p is prime and p + 2 = P20, where I use Pn to mean that it’s a number with
at most 20 factors (with multiplicity). This is a supposed to be a relatively simple
exercise (though I haven’t done it, so I can’t really say) - it is in Iwaniec-Kowalski.
With some improvements, one can prove Chen’s Theorem: there are infinitely many
pairs p, p + 2 where p is prime and p + 2 = P2 an almost-prime. For a long time,
this was the closest anyone got to the twin primes conjecture. (Interestingly, with
slight modification, it was also the closest anyone got to the Goldbach conjecture,
which are very similar through the lens of Sieve Theory). However it seems unlikely
that Chen’s results can be improved without significant modification - twin primes
are beyond Brun’s Sieve.

The idea behind Brun’s Sieve is in essence the same as the Sieve of Eratosthenes,
except that one splits apart the sums into positive and negative parts and uses a couple
more nice multiplicative function tricks. These give more places for optimization,
which is a big part of sieve theory: optimize optimize optimize.

4 Modern Results

After Brun reëstablished interest in sieve theory, different and more powerful sieves
emerged. Although there are many (google can tell you as much), the one we’re going
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to talk about is Selberg’s Sieve. Here’s an idea of how we might try to apply Selberg’s
Sieve to twin primes (and in the process, we’ll get an idea of what Selberg’s Sieve is).
Let

Θ(n) =

{
log n n prime

0 else
,

and consider the pair of functions

S1(x) =
∑

x<n<2x

f(n), S2(x) =
∑

x<n<2x

(Θ(n+ 2)−Θ(n))f(n),

for some to-be-chosen function f(n) ≥ 0. Notice that we are summing across n
between some x and 2x. If both n and n + 2 are prime, then Θ(n) + Θ(n + 2) ≈
log x+ log x = log x2, and in particular

(Θ(n+ 2)−Θ(n))f(n)− log(3x)f(n) > 0.

If we don’t have that both n and n+ 2 are prime, then Θ(n) + Θ(n+ 2) ≈ log x (or
= 0), and

(Θ(n+ 2)−Θ(n))f(n)− log(3x)f(n) < 0.

So we might try to find a function f(n) such that S2(x) − log 3xS1(x) > 0 for
sufficiently large x or at least for infinitely many choices of x. If this is the case, then
by the cases mentioned above there must be a pair of twin primes in [x, 2x]. In a
sense, we have thrown in an additional function f for greater control and optimization
- although the path to choosing such f is not at all clear (that’s probably what makes
it exciting).

It shouldn’t come as a great surprise that we haven’t found such an f . So we try
to get a weaker result. Let H = {h1, h2, . . . , hk} be a set of numbers with a property
called “admissibility” (i.e. H is admissible). What this means is that nothing trivial
is preventing the numbers p, p + h1, p + h2, p + h3, . . . , p + hk from all being prime
numbers infinitely often. For example, we will never find a pair of primes p, p + 7,
since they are an odd number apart and the only even prime is 2. Slightly more
meaningfully, we won’t find a trio of primes p, p + 2, p + 4 above 3, 5, 7 because all
residue classes mod3 are represented, so one of the three numbers will always be
divisible by 3.

If H fails one or more of these residue tests, we call H inadmissible. Goldston
(and later Pintz, Yildirim, Zhang, Maynard, and polymath8) considered the pair of
functions

S1(x) =
∑

x<n<2x

f(n), S2(x) =
∑

x<n<2x

(∑
h∈H

Θ(n+ h)

)
f(n),

for H some admissible set. Then if one could find an f where S2 − log 3xS1 > 0
infinitely often, we would have infinitely many prime pairs of the form p, p + h for
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some h in H. So one might try different functions f , bound S2 from below and S1

from above, and see what happens. This more or less happened, even, but saying it
now would omit an important part of the story.

Goldston, Pintz, and Yildirim used this style of sieve, and many very subtle
arguments, to prove some results towards the twin prime conjecture ( [2], [3], [4]).
Their sieve is often called the GPY sieve after their names. Something of note is that
they sieved all the way up to x (not up to x1/5 like we did), which means they have
really tight control and understanding of error terms. They showed that a relevant
piece of information is the “level of distribution of the primes”, which is a measure of
how much the distribution of the primes matches some naive estimates. In particular,
if ∀ε there is an ε′ > 0 such that∑

q<xϑ−ε

max
a

∣∣∣∣π(x; q, a)− li(x)

ϕ(q)

∣∣∣∣� x1−ε
′
,

where li(x) =
∫ x
1

log x
x

dx is the logarithmic integral, which happens to give an asypm-
totically close estimate to the number of primes up to x, ϕ(q) is the number of
integers less than q that are relatively prime to q, and π(x; q, a) is the number of
primes less than x that are in the arithmetic progression (a, a + q, a + 2q, . . .), then
we say the “level of distribution of the primes” is at least ϑ. Dirichlet proved that

π(x; q, a) ≈ li(x)

ϕ(q)
, so in a sense this is bounding how far away the primes are from

our estimate.
In 1965, Bombieri and Vinogradov showed that ϑ ≥ 1

2
. In 2005, Goldston, Pintz,

and Yildirim showed that if ϑ > 1
2
, then lim inf(pn − pn) < ∞, where pn is the nth

prime. In other words, if ϑ > 1
2
, then there are infinitely many primes pairs p, p + h

for some finite and fixed h. They also showed that unconditionally, we’re not far off:

lim inf
n→∞

pn+1 − pn
log n

→ 0.

And this was the direction of progress. Unfortunately, no one knew how to prove
anything stronger about ϑ. Some could prove other things - if ϑ > 0.971, then there
are infinitely many prime pairs p, p+ h for some finite and fixed h ≤ 16, for example.
But there was no other serious avenue of progress.

Then came Yitang Zhang [7], using a very similar sieve to Goldston’s Selberg-style
sieve. One way of stating what Zhang did is that he sieved over fewer integers (not
all the way up to x), but managed to prove new and improved bounds on particularly
nasty yet ubiquitious sums called Kloosterman sums, that ultimately allowed him to
prevail. A slightly different (and slightly loose) view is that he sieved less efficiently to
give him more flexibility, and he controlled the error better than anyone had before.

Ultimately Zhang proved that lim inf(pn+1 − pn) ≤ 7 · 107 in 2013. His paper is
remarkably clear, modular, and easy to read (for a mathematician, that is). He also
very openly stated that he did not optimize his result.
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So when Terry Tao started polymath8 [1] with the goal of optimizing Zhang’s
work, there was rapid progress. They quickly brought 7 · 107 down to 5414, and it
has continued to decrease since.

ADDENDUM: I gave this talk before Maynard [6] announced his result and be-
fore polymath8b started. But it should be mentioned that Maynard (independently)
proved this and stronger results, not only about prime pairs, but about arbitrarily
large sets of primes occurring infinitely often. Terry Tao’s polymath8b started to
improve and optimize these new results, and is in the process of doing that right now.

5 Concluding Remarks

I hope this was an enjoyable presentation. There is a list of references at the end
containing places for additional information. Many more references can be found at
the main site for they polymath projects, which I always endorse and encourage (and
sometimes participate in). This note can be found online at davidlowryduda.com.
This was typed up in LaTeX with vim and converted to wordpress html using a
(modified version of) latex2wp.

This document is also available as a pdf or tex (email me). If you have any
questions, comments, tips, or concerns, please leave a comment online, in person, or
via email.
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