This is a note written for my fall 2013 Math 100 class, but it was not written “for the
exam,” nor does anything on here subtly hint at anything on any exam. But I hope
that this will be helpful for anyone who wants to get a basic understanding of Taylor
series. What I want to do is try to get some sort of intuitive grasp on Taylor series as
approximations of functions. By intuitive, I mean intuitive to those with a good grasp
of functions, the basics of a first semester of calculus (derivatives, integrals, the mean
value theorem, and the fundamental theorem of calculus) - so it’s a mathematical
intuition. In this way, this post is a sort of follow-up of my earlier note, An Intuitive
Introduction to Calculus.

We care about Taylor series because they allow us to approximate other functions in
predictable ways. Sometimes, these approximations can be made to be very, very, very
accurate without requiring too much computing power. You might have heard that
computers/calculators routinely use Taylor series to calculate things like e” (which
is more or less often true). But up to this point in most students’ mathematical
development, most mathematics has been clean and perfect; everything has been
exact algorithms yielding exact answers for years and years. This is simply not the
way of the world.

Here’s a fundamental fact to both mathematics and life: almost anything worth doing
is probably pretty hard and pretty messy.

For a very recognizable example, let’s think about finding zeroes of polynomials.
Finding roots of linear polynomials is very easy. If we see 5 + x = 0, we see that
—5 is the zero. Similarly, finding roots of quadratic polynomials is very easy, and
many of us have memorized the quadratic formula to this end. Thus az?+bx +c =0
has solutions ¢ = =bEvb-—dac W. These are both nice, algorithmic, and exact. But I
will guess that the vast majority of those who read this have never seen a “cubic
polynomial formula” for finding roots of cubic polynomials (although it does exist, it
is horrendously messy - look up Cardano’s formula ). There is even an algorithmic
way of finding the roots of quartic polynomials. But here’s something amazing: there
is no general method for finding the exact roots of 5th degree polynomials (or higher
degree).

I don’t mean We haven’t found it yet, but there may be one, or even You’ll have to
use one of these myriad ways - 1 mean it has been shown that there is no general
method of finding exact roots of degree 5 or higher polynomials. But we certainly can
approximate them arbitrarily well. So even something as simple as finding roots of
polynomials, which we’ve been doing since we were in middle school, gets incredibly
and unbelievably complicated.

So before we hop into Taylor series directly, I want to get into the mindset of approx-
imating functions with other functions.



1 Approximating functions with other functions

We like working with polynomials because they’re so easy to calculate and manipu-
late. So sometimes we try to approximate complicated functions with polynomials, a
problem sometimes called “polynomial interpolation” .

Suppose we wanted to approximate sin(z). The most naive approximation that we
might do is see that sin(0) = 0, so we might approximate sin(z) by po(z) = 0. We
know that it’s right at least once, and since sin(z) is periodic, it’s going to be right
many times. I write py to indicate that this is a degree 0 polynomial, that is, a
constant polynomial. Clearly though, this is a terrible approximation, and we can do
better.
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1.1 Linear approximation

So instead of a constant function, let’s approximate it with a line. We know that
sin(0) = 0 and sin(7w/2) = 1, and two points determine a line. What is the line that
goes through (0,0) and (%,1)?. It’s p1(z) = 2z, and so this is one possible degree 1
approximation:

pi(x) = %x
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You might see that our line depends on what two points we use, and this is very
true. Intuitively, you would expect that if we chose our points very close together,
you would get an approximation that is very accurate near those two points. If we
used 0 and 7/100 instead, we get this picture:
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Two points determine a line. I've said this a few times. Alternately, a point on the
line and the slope of the line are enough to determine the line. What if we used that
sin(0) = 0 to give us the point (0,0), and used that sin’(0) = cos(0) = 1 to give us
our direction? Then we would have a line that goes through the point (0,0) and has
the right slope, at least at the point (0,0) - this is a pretty good approximate. I'll
call this line T}(z), and in this case we see that T1(z) = 0+ 1z = x. Aside: Some
people call the derivative the “best linear approximator” because of how accurate this
approximation is for x near 0 (as seen in the picture below). In fact, the derivative
actually 1s the “best” in thise sense - you can’t do better.
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These two graphs look almost the same! In fact, they are very nearly the same, and
this isn’t a fluke. If you think about it, the secant line going through (0,0) and
(705> sin(7/100)) is an approximation of the derivative of sin(x) at 0 - so of course
they are very similar!

1.2 Parabolic approximation

But again, we could do better. Three points determine a parabola. Let’s try to use
sin(0) = 0, sin(7/2) = 1 and sin(7) = 0 to come up with a parabola. One way we
could do this would be to use that we know both roots of the parabola, 0 and 7. So
our degree 2 approximation must be of the form py(z) = a(x — 0)(z — 7), since all
degree 2 polynomials with zeroes at 0 and 7 are of this form (I am implicitly using
something called the Factor Theorem here, which says that a polynomial p(x) has a
root r if and only if p(x) = (x — r)q(x) for some other polynomial q(x) of degree one
less than p). What is a? We want it to pass through the point (7/2,1), so we want
p2(m/2) = 1. This leads us to a(m/2)(—7/2) =1, so that a = —%. And so
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po(z) = —Fa:(:c — 7).



sin(z) and p, (z) =—z(z—m)4 /7
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As we can see, the picture looks like a reasonable approximation for x near 7/2, but
as we get farther away from /2, it gets worse.

Earlier, we managed to determine a line with either 2 points, or a point and a slope.
Intuitively, this is because lines look like bx 4 a, so there are two unknowns. Thus it
takes 2 pieces of information to figure out the line, be they points or a point and a
direction. So for a parabola cxz? + bx + a, it takes three pieces of information. We've
done it for three points. We can also do it for a point, a slope, and a concavity, or
rather a point, the derivative at that point, and the second derivative at that point.

Let’s follow this idea to find another quadratic approximate, which I'll denote by
T, in parallel to my notation above, for x around 7/2. We'll want Ty(7w/2) = 1,
T'(r/2) = 0, and T"(7/2) = —1, since sin(r/2) = 1,sin’(7/2) = cos(n/2) = 0, and
sin”(7/2) = —sin(7/2) = —1. How we we find such a polynomial? The “long” way
would be to call it cx? + bx + a and create the system of linear equations

To(n/2) = a(r/2)? +b(7/2) +c =1

Ty(7/2) = 2a(w/2) + b= 0
T(r/2) = 2a = —1



and to solve them. We immediately see that a = —%, which lets us see that b = 7,

which lets us see that c =1 — %2. This yields
1 s 2
To(x) = —=2*+ 2 +1— —.
5(z) 5% + 2:1:—1— 3

The “clever” way is to write the polynomial in the form Ts(x) = c(z — (7/2))? + b(x —
(7/2)) + a, since then Ty(7/2) = a (as the other terms have a factor of (z — (7/2))).
When you differentiate T5(x) in this form, you get 2¢(x— (7/2))+b, so that Ty(7/2) =
b. And when you differentiate again, you get 2c, so that $7%(7/2) = c. This has
the advantange of allowing us to simply read off the answer without worrying about
solving the system of linear equations. Putting these together gives

Ty(a) = 5 — (/2 + 0+ 1

And if you check (you should!), you see that these two forms of T5(x) are equal. This
feels very “mathlike” to me. These approximations look like

sin(z) and T, (z) =1—(z—/2)* /2
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Comparing the two is insteresting. po is okay near 7/2, then gets a bit worse, but
then gets a little better again near 0 and 7. But 75 is extremely good near 7/2, and
then gets worse and worse.



1.3 Cubic approximation

You can see that T gives us a better approximation than p, for z close to 7/2, just
as 17 was better than p; for  near 0. Let’s do one more: cubic polynomials. Let’s
use the points —x /3, —7/6,7/6, and 7/3 to generate ps3. This yields

sin(F)(z + §)(x—5)(x—3)  sin(F)(z+3)(z—F)(r—3F)
PTTEAIE DG GraE -G
N sin(§) (@ + 3) (@ + §)(r — %) N sin(3) (v + 3) (v + §)(r —F)
G+PG+DG-D & G+IG+DG-D

Showing this calculation is true leads us a bit further afield, but we’ll jump right in.
Four points, so if we wanted to we could create a system of linear equations as we did
above for Ty and solve. It may even be a good refresher on solving systems of linear
equations. But that’s not how we are going to approach this problem today. Instead,
we're going to be a bit “clever” again.

Here’s the plan: find a polynomial-part that takes the right value at —7/3 and is 0
at —m/6,7/6 and 7/3. Do the same for the other three points. Add these together.
This is reasonable since it’s easy to find a cubic that’s 0 at the points —7 /6, 7/6 and
7/3: it’s a(x+7/6)(x —7/6)(x —7/3). We want to choose the value of a so that this
piece is sin(—7/3) = —v/3/2 when = —7/3. This leads us to choosing

_\/3/2
(—7/3+7/6)(—7/3 —7/6)(—7/3 —7/3)

In other words, this polynomial part is

a =

_Jajy. (atm/0) @ —7/6)(x —7/3)
Nl ey ey ey ey ey

Written in this form, it’s easy to see that it is 0 at the three points where we want
it to be 0, and it takes the right value at —m/3. Notice how similar this was in feel
to our work for the quadratic part. Doing the same sort of thing for the other three
points and adding all four together yields a cubic polynomial (since all four subparts
are cubic) that takes the correct values at 4 points. Since there is only 1 cubic that
goes through those four points (since four points determine a cubic), we have found it.
Aside: this is just a few steps away from being a full note about Lagrange polynomial
interpolation This looks like
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These points were chosen symmetrically around 0 so that this might be a reasonable
approximation when z is close to 0. How will p; compare to T3, the approximating
polynomial determined by sin(z) and his derivatives at 07 Our four pieces of infor-
mation now will be sin(0) = 0,sin’(0) = cos(0) = 1,sin”(0) = —sin(0) = 0, and
sin”(0) = —cos(0) = —1. Writing Ty first as T3(x) = da® + c2? + bx + a, we see
that 7,(0) = a, T4(0) = b,7%(0) = 2¢, and T3"(0) = 3!d. This lets us read off the
coefficients: we have a = 0,b=1,¢=0,d = —1/6, so that in total

1
Tg(.flf) = _61;3 + xZ,

which looks like



sin(z) and T;(x)
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These look very similar. Which one is better? Let’s compare the differences between
ps(z) and sin(x) with the differences between T3(x) and sin(z) in graph form. This
next picture shows sin(x) — ps(z), or rather the error in the approximation of sin(z)
by ps(x). What we want is for this graph to be 0, since this means that sin(z) is
exactly ps(z), or as close to 0 as possible. Since the approximation is so good, the
picture is very zoomed in.
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Error between sin(z) and p,; (z)
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Notice that the y-axis is labelled by “le-3”, which meand 1072 = .001. So the error
is within 0.001, which is very small (we really zoomed in). As you can see, the error
is a bit weird. It oscillates a little, and is a bit hard to predict. Now let’s look at the
picture of sin(x) — T3(x).
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Error between sin(z) and T; (z)
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This error is very easy to predict, and again we can see that it is extremely accurate
near the point we used to generate the approximation (which is 0 in this case). As
we get further away, it gets worse, but it is far more accurate and more predictably
accurate in the center. Further, T3(x) was easier to generate than ps(z), and it gives
four decimal places of accuracy near 0 while p3(x) can only give two. So maybe there
is something special to these T" polynomials. Let’s look into them more.

Aside: people spend a lot of time on these interpolating problems. If this is something
you are interested in, let me know and I can direct you to further avenues of learning
about them

2 Taylor Polynomials

The idea that the T),(z) polynomials were better approximates than p,(x) around
the central point, as we saw above, led to the 7" polynomials getting a special name:
they are called “Taylor Polynomials.” This might not be how you’ve seen Taylor
polynomials introduced before, but this is where they really come from. And this
is what keeps the right intuition. Just as the first derivative is the “best linear
approximation,” these Taylor Polynomials give the best quadratic approximation,
cubic approximation, etc. Let’s get the next few Taylor polynomials for sin(z) for z

12



near 0.

We saw that T3(z) = 2 — ¢2®. And the way we got this was by calculating sin(z)
and its first three derivatives at 0 (giving us 4 pieces of information), and finding the
unique cubic polynomial satisfying those four pieces of information. So to get more
accuracy, we might try to include more derivatives. So let’s use the sin(z) and its first
four derivatives at 0. These are sin(0) = 0,sin’(0) = cos(0) = 1,sin”(0) = —sin(0) =
0,sin”(0) = — cos(0) = —1, and sin™®(0) = sin(0) = 0. Writing Ty(z) = az?* + ba® +
cxr? + dx + e, we expect Ty(0) = e, T;(0) = d,T}(0) = 2¢,T;"(0) = 3!b, T4(4)(0) = 4la.
Since the fourth derivative is 0, we get the same polynomial as before! We get x — %x?’.
But before we go on, notice that the constant term e came from evaluating sin(0),
the coefficient of x came from evaluating cos(0), the coefficient of z? came from
5+ —sin(0), the coefficient of 2* came from 3; - — cos(0), and the coefficient of z* came
from % sin(0). These are exactly the same expressions that came up for a,b, ¢, and d

from before.

This is something very convenient. We see that the coefficient of ™ in our T" poly-
nomials depends only of the nth derivative of sin(z). So to find 75, I don’t need to
recalculate all the coefficients. I just need to realize that the coefficient of z° will
come from the fifth derivative of sin(z) at 0 (which happens to be 1). And to get
this, we would have differentiated T5(z) five times, giving us an extra 5!, so that the
coefficient is & - sin®(0) = &. All told, this means that

and that this is the best degree 5 approximation around the point 0. Pictorally, we
see

13



sin(z) and T;(x)
1 -

0.5

-1k

Now that we’ve seen the pattern, we can write the general degree n Taylor polynomial
,T,,, approximation for sin(x):

n/2 k
1 3 1 5 1 7 [ (n) _ (_1) 2k+1

The next images shows increasingly higher order Taylor approximations to sin(z).
Worse approximations are more orange, better are closer to blue.
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What we’ve done so far extends very generally. The degree n polynomial that agrees
with the value and first n derivatives of a function f(x) at x = 0 approximates the
function f(z) for values of x near 0, and in general these polynomials are given by

k)
T.(z) = Z fk—'(o)a:k
k=0 '

This prompts two big questions. First: how good are these approximations? And
second, since using more derivatives gives us better approximations, does using “all”
the derivatives give us the whole function? Rather, if f is infinitely differentiable, is

it true that f(z) => 7, f(l:!(o)xk? Or is it at least true that this gives us the “best”

approximation we can get from a single point?

These are big questions, and they are all inter-related. The first question leads to
considering the remainder, or error, of Taylor polynomials. And the second leads us
to consider infinite Taylor series associated to a function.
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3 Estimating the Error of Taylor Polynomial Ap-
proximations

If we want to know how well we can expect Taylor polynomials to approximate their
associated function, then we need to understand the error, or differences, between the
two. We might hope that Taylor polynomials always give very good approximations,
or that if we use enough terms, then we can get whatever accuracy we want.

But this is not true.

One good example is the function:

T o<
bz) = et 0<z<l1
0 rz>1

This is often called the bump function, because it looks like
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which is just a little bump. The weird thing about this is that b(z) is differentiable
everywhere. This isn’t obvious, because we defined it in two pieces. But it turns out
that this function has a derivative even at 1, where the two “pieces” touch. In fact,
this function is infinitely differentiable everywhere. So that’s already sort of weird.
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It’s weirder, though, in that all the derivatives of b(z) at 1 are exactly 0 (so that these
derivatives are more like the derivatives of the constant 0 function to its right than
the “bump” part to its left).

So if you look at the Taylor polynomials for b(z) generated at the point 1, then you
would get T,,(x) = 0 for all n (all the derivatives are 0). These Taylor polynomials
do a terrible job of approximating the bump function.

It turns out that there are many, many functions that are very “nice” in that they
have many derivatives, but which don’t have well behaved Taylor approximations.
There are even functions that have many derivatives, but whose Taylor polynomials
never provide good approximations, regardless of what point you choose to generate
the polynomials.

To make good use of Taylor polynomial approximations, we therefore have to be a
bit careful about the error in the approximations. To do this, we will use the mean
value theorem. (Aside: For those keeping score, the mean value theorem gives us so
much. In my previous note , I talk about how the mean value theorem gives us the
fundamental theorem of calculus. Now we’ll see that it gives us Taylor series and their
remainder too. This is sort of crazy, since the statement of the mean value theorem
is so underwhelming.)

This also marks a turning point in this note. Suddenly, things become much less
experimental and visual. We will prove things - but don’t be afraid!

The mean value theorem says that if a function f is differentiable, and we choose
any two numbers in the domain a and b, then there is a point ¢ between a and b so

that f'(c) is equal to the slope of the secant line from (a, f(a)) to (b,g(b)). Stated

OB
b—a

differently, there is a point ¢ between a and b so that f'(c)
If we suppose that b = x and a = 0 (or you could keep a as it is for Taylor polynomials
generated at points other than 0), then we get that there is some ¢ between 0 and z
such that f'(c) = w. Rearranging yields f(z) = f(0) + f'(c)z. This serves as
a bound on the error of the 0 degree Taylor polynomial at 0, which is just Tp(x) =
f(0). How so? This says that the difference between f(z) and f(0) (which is our
approximate in this case) is at most f’'(c)z for some c¢. If we happen to know that
f'(¢) < M for all ¢ in [0, z], then we know that f(z) — f(0) < Mz. So our error at

the point x is at most Mx.

This really isn’t very good, but it is also a very bad approximate. On the other hand,
this semi-trivial example contains the intuition for the proof.

To get a bound on linear approximations, we start off with the derivative of f. If we
apply the mean value theorem of f’(x), we get that there is some ¢ between 0 and x
so that f”(c) = w, or rather that f'(x) = f'(0) + f”(c)z. (This shouldn’t be
a surprise - f'(x) is just a function too, so we expect to get this in the same form as
we had above). Here’s where we can do something interesting: let’s integrate this. In
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particular, let’s rewrite this in ¢:

f1(#) = 1) + f(e)t,

/0 " p(de = / ")+ f (o). 1)

The second fundamental theorem of calculus (which is also essentially the mean value

theorem!) says that / f'(t)dt = f(x) — f(0). So the equation above becomes
0

and let’s integrate him:

2

J@) = £(0) = 2'(0) + ()5

which rearranges to
2

F&) = F(0) +2f(0) + f"(e) 5
This says that the error in our linear Taylor polynomial T (x) = f(0) + xf'(0) is at
most f” (c)‘%2 for some ¢ in [0, z]. So as before, if we know a bound M on the second
derivative, then our error is at most Mx?/2. This is much better than what we had
above. In particular, if our z value is close to 0, like say less than 1/10, then the z?
bit in the error means the error has a factor of 1/100. But as we get further away
from 0, we expect worse error. This is why in the pictures above we see that the
Taylor polynomials give very good approximations near the center of the expansion,
and then get predictably worse.

Let’s do one more, to see how this works. Now we will start with the second derivative.
The mean value theorem says again that f”(z) = f”(0) + f"”(c)x. Writing this in ¢
and integrating both sides, we get

/ F(t)dt = / (F"(0) + 1" (c)t)dl

F1@) = 10 = P/0)r + (0%

Rearranging gives
f'(x) = f1(0) + f"(0)x + f"(c) fracz®2.
(This shouldn’t surprise us either, since the second derivative is just a function. So

of course it has a first order expansion just like we saw above.) Let’s again write this
in ¢ and integrate both sides,

/ F(t)dt = /(f’(0)+f”(0)t+f”’(c)
)~ £(0) = f(0)x + ()%

t2
—)dt
5)

3

2
" x
5+ f (C)g-
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Rearranging yields

x3

2

J(@) = F0) + [z + " (0)F + ()5, 2)
for some ¢ between 0 and . Now we see that the approximations are getting better.
Firstly, for z near 0, we now get a cubic factor in the error term. So if we were
interested in x around 1/10, now the error would get a factor of 1/1000. That’s
pretty good. We also see that there is a rising factorial in the denominator of the
error term. If there is anything to know about factorials, it’s that they grow very,
very fast. So we might hope that this factorial increases with higher derivatives so
that the error is even better. (And this is the case).

So the only possible bad thing in this error term is that f”’(x) is not well-behaved, or
is not very small, or is very hard to understand. And in these cases, the error might
be very large. This is the case with the bump function above - the derivatives grow
too rapidly.

If you were to continue this process, you would see that the general pattern is
2

f(@) = f(0) + f/(0)z + f”(O)% ot f(”)(O)Z—T + f(”“)(C)m (3)

for some ¢ between 0 and x. And this is where the commonly quoted Taylor remainder
estimate comes from:

1)~ Tuw) = 1) = (100 7O+ V0| S MG,

n+1

where M is the maximum value that |f™+(c)| takes on the interval [0, z].

There are other ways of getting estimates on the error of Taylor polynomials, but this
is by far my favorite. Now that we have estimates for the error, how can we put that
to good use?

Let’s go back to thinking about the Taylor polynomials for sin(x) that was the source
of all the pictures above. What can we say about the error of the degree n Taylor
polynomial for sin(z)? We can say a lot! The derivatives of sin(x) go in a circle:
sin(x) — cos(x) — —sin(z) — —cos(x) — sin(x). And all of these are always
bounded below by —1 and above by 1. So the (n + 1)st derivative of sin(z) is always
bounded by £1. By the remainder we derived above, this means that

n—+1 n+1

|sin(z) — Tn()]

x x
= M(n+1)!‘ = 1(n+ n

For small x, this converges really, really fast - this is why the successive approxima-
tions above were so accurate. But it also happens that as n gets bigger, the factorial
in the denominator grows very fast too - so we get better and better approximations
even for not small . This prompts another question: what would happen if we kept
on including more and more terms? What could we say then? This brings us to the
next topic.
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4 Taylor Series

Now we know the nth Taylor polynomial approximates sin(x) very well, and increas-
ingly well as n increases. So what if we considered the limit of the Taylor polynomials?
Rather, what if we considered

o n 2k+l

lim T (
oty Z; 2k:+1

This is a portal into much deeper mathematics, and is the path that many of the
mathematical giants of the past followed. You see, infinite series are weird. When do
they exist? Is an infinite sum of continuous functions still continuous? What about
differentiable?” These are big, deep questions that are beyond the scope of this note.
But some of the intuition is totally within the scope of this note.

We know the error of the nth Taylor polynomial to sin(x) is bounded above by (‘anTT),
If we take the limit as n — oo of the sequence of remainders, we get

l.nJrl

lim ——— — 0
noinfty (n+ 1)1

and it goes to 0 no matter what z is. (Factorials grow larger than the numerator
for any fixed ). So no matter what = is, as we use more and more terms, the
approximations become arbitrarily good. In fact, since the error goes to 0 and is
well-behaved, we have a powerful result:

n 2n+1

SlIl Z 2n n 1

n=0

That is equality. Not approximately equal to, but total equality. Some people even
go so far as to define sin(z) by that Taylor series. When I say Taylor series, I mean
the infinite sum. People study Taylor series to try to see what information they can
glean about functions from their Taylor series. For example, we know that sin(x) is
periodic. But how would you determine that from its Taylor series? (It’s not very

easy).

It turns out that you can tell a lot about a function from its Taylor series (although
not as much as we might like, and we don’t really study this in math 100). Functions
that are completely equal to their Taylor series are called “analytic” functions, and
analytic functions are awesome. But even Taylor polynomials are good, and used to
approximate hard-to-understand things.

Aside: I do a lot of work with complex numbers (where we allow i = /—1 and
things like that) instead of real numbers. One reason why I prefer complex numbers is
that complex analytic functions, which are complex-valued functions that are exactly
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equal to their Taylor series, are miraculous things. Being complex analytic is totally
amazing, and you can tell essentially anything you want from the Taylor series of a
complex analytic function. This is to say that you are on the precipice of exciting and
very deep mathematics. Of course, that’s where introductory classes stop.

5 Conclusion

We saw Taylor polynomials, some approximations, some proofs, and some Taylor
series. Ome thing I would like to mention is that for applications, people normally
use finite Taylor polynomials and show (or use, if it’s well known) that the error is
small enough for the application. But Taylor polynomials are useless without some
understanding of the error. In Math 100, we give a totally lackluster treatment of
error estimates. Serious math and physics concentrators will probably need and use
more than what we have taught - even though now is perhaps the best time to learn
it. So it goes! (Others might very well use Taylor polynomials and their error, but
many useful functions and their remainders are understood just as well as those for
sine, which we saw here; it is not always necessary to reinvent the wheel, although it
can be rewarding in less immediate ways).

I hope you made it this far. If you have any comments, questions, concerns, tips,
or whatnot then feel free to leave a comment or to ask me. For additional reading,
I would advise you to use only google and free materials, as everything is available
for free (and I mean legally and freely available). Something I did not mention but
that I've been thinking about is presenting a large collection of applications of Taylor
series. Perhaps another time.

This note can be found online at mixedmath.wordpress.com or davidlowryduda.com
under the title “An Intuitive Overview of Taylor Series.” This note was written with
vim in latex, and converted to html by a modified latex2wp. Thus this document
also comes in pdf and .tex code . The pdf does not include my beautiful gif, which
I am always proud of. The graphics were all produced using the free mathematical
software sage . Interestingly, this note was the source of sage trac 15419, which will
likely result in a tiny change in sage as a whole. I highly encourage people to check
sage out.

And to my students - I look forward to seeing you in class. We only have a few left.
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