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1. Introduction

We have now covered three-fifths of the material from this course. While
in many ways, this course has been cumulative and we have revisited much
of the earlier material repeatedly, there are things that have been left out.
In this packet, we will review some of the problem-types that we have come
across and methods of finding their solution.

We will also take this time to combine our new skills, such as our knowl-
edge of trigonometric identities and transcendental functions, with some of
our old skills.

2. Elementary Functions

We started by reviewing basic factoring and graphing linear equations.
We then worked on developing the algebraic and graphical qualities of poly-
nomials. We learned to solve any quadratic equation that we will ever see
(any cubic too, though that’s much harder). Later came the Factor Theo-
rem and the Rational Root Theorem, allowing us to solve more. This all
culminated with rational functions. This first set of exercises covers this
material.

2.1. Factoring and Solving Quadratics.

Example 2.1. One tool that we use with high frequency is factoring. We
cannot get away from factoring, it turns out. Many tools revolve around
factoring. We’ll look at three major factoring tools here.

(1) (x+ y)2 = x2 + 2xy + y2 and (x− y)2 = x2 − 2xy + y2
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(2) (x− y)(x+ y) = x2 − y2
(3) Completing the square

Example 2.2. We can use (x + y)2 = x2 = 2xy + y2 and (x − y)2 =
x2−2xy+ y2 both ways. For example, when we see an expression that we’d
like to expand, like (sinx+cosx)2, we can immediately say that it is sin2 x+
cos2 x+ 2 sinx cosx = 1 + 2 sinx cosx without any FOILing. (further, if we
are exceptionally clever, we might remember that 2 sinx cosx = sin(2x)).

On the other had, we can factor functions quickly too. For example, when
we are asked to find the roots of e2x−4ex +4, we recognize this as (ex−2)2.
Thus there is a double root at x = ln 2.

Exercise 2.3. Expand the following without directly multiplying it out:

• (3x+ 2y)2

• (5x− 4)2

• (x+ cosx)2

• (secx− sinx)2

• (ex + e−x)2

Exercise 2.4. Factor the following:

• cos2 x+ 2 cosx tanx+ tanx x
• 2e2x + 6

√
2ex + 9

• sin2 x+ 8 sinx+ 16
• 2 + x2 + x−2

Example 2.5. It is usually very easy to see cases where we have (x−y)(x+y)
and rewrite it as x2 − y2, but we sometimes need to approach it in the
opposite direction. For example, if we want to find the roots of sin2 x− 1/2,
we can do this quickly and easily with this factoring method. sin2 x−1/2 =
(sinx− 1/

√
2)(sinx+ 1/

√
2), and thus the solutions are x = π/4 + nπ/2.

Exercise 2.6. Factor the following:

• 3x2 − 2y2 (just because everything starts as ’squares’ doesn’t mean
that they’re the squares of pretty numbers)
• 4e2x − 9
• 2 tanx− 4

Further, if we want to factor over the complex numbers, we might notice
that x2 + y2 = (x+ iy)(x− iy). So we cam factor the following:

• 4x2 + 9y2

• 2x2 + 16y2

Example 2.7. There is a general form for completing the square that always

works. If we have x2 + ax + b, we can note that x2 + ax + a2

4 −
a2

4 + b =

(x+ a
2 )2− a2

4 +b. For example, x2+3x+5 = x2+3x+ 9
4−

9
4+5 = (x+ 3

2)2− 9
4+5.

If we believe this pattern, we could skip the middle.
For example, if we had x2+10x+3, we could write this as (x+ 10

2 )2−25+3
without any of the middle expansions.
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Exercise 2.8. Complete the square on the following:

• x2 + 18x+ 2
• x2 + 5x+ 3
• sin2 x+ 3 sinx+ 2
• 2x2 + 3x + 5 (the task here is to remember how to deal with the

leading 2)

The goal is for these factoring techniques to feel like second nature. The
less one needs to think about them, the better. The task of finding roots
is largely equivalent to factoring, due to the Factor Theorem. In short, this
says that if p(x) is a polynomial and p(r) = 0, then p(x) = (x−r)q(x) where
q(x) is a smaller degree polynomial. Thus we can pull out a linear factor of
(x− r).

Example 2.9. Anytime we see a quadratic, we should be happy. We can
solve quadratics, always. Through factoring or the quadratic formula, we can
always solve quadratics. In fact, we can solve them quickly. One shouldn’t
need to spend more than a minute on a quadratic in the form ax2+bx+c = 0.

Exercise 2.10. Solve the following quadratics:

• x2 + 5x+ 18 = 0
• 4x2 + 3x+ 2 = 0
• 2 sin2 x+ 3 sinx+ 1 = 0
• 3 cos2 x+ 8 sinx+ 1 = 0
• 2e4x − 13e2x + 1 = 0

In cases (like above), remember that cos2 x+ sin2 x = 1, and this can be
modified to relate csc2 x to cot2 x, or to relate sec2 x to tan2 x. It’s important
to recognize ’hidden quadratics,’ and to do the necessary work to transform
a quadratic into a form that you can solve.

Exercise 2.11. Solve the following quadratics:

• 5 cot2 x+ 14 cscx+ 1 = 0
• 2 cos2 x+ 4 sinx+ 2 = 0
• tan2 x+ 5 secx+ 3 = 0
• (x− 2)2 + 2x+ 4 = (x− 1)
• (x− 3)3 + (x− 1)(x+ 1) = x3 + 1
•
√
x− 2 +

√
x+ 2 = 2

•
√
x+ 1 +

√
x− 4 =

√
x+ 5

2.2. Polynomial Inequalities. Perhaps the best way of solving polyno-
mial inequalities is to find its roots, make a sign chart, and just test on
each side of each root. It is almost certainly the fastest. This is our general
method:

Example 2.12. When we see a polynomial inequality p(x) ≥ 0, we find
the roots r1, . . . , rn of the polynomial. We then draw a number line, and
see if the polynomial is positive or negative between each pair of roots. As
polynomials are continuous, they will only change signs at roots. We use
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this to decide on our inequality. As an aside, I want to mention that this is
one of the easiest types of questions to merit partial credit as long as you
show your work, if you’re in a graded situation.

Example 2.13. Let us solve the quadratic inequality 3x2 + 4x ≥ 1. First,
we gather ever everything to one side. So we want to solve 3x2 + 4x −
1 ≥ 0. Where are the roots of the quadratic 3x2 + 4x − 1? This doesn’t
immediately seem to factor nicely, so we use the quadratic formula: the

roots are x+, x− =
−4±

√
16 + 12

6
. These roots split the real line into the

three regions (−∞, x−), (x−, x+), (x+,∞). We need to check the sign of our
polynomial on each of the three regions. Using, for example, −100, 0, 100,
we see that the signs go + − +. Thus the inequality’s solution is x in(
−∞, −4−

√
28

6

]
and

[
−4 +

√
28

6
,∞

)
.

Exercise 2.14. Solve the following quadratic inequalities.

• 8x2 − x > 3
• 9x2 + 6x > 1
• 4x2 ≥ 4

The same idea works for higher degree polynomials as well. The task is
the same: find the roots, make a number line, identify regions where the
polynomial is positive and negative, and use this to find your answer. Also
remember - it is not always the case that the sign switches positive
negative positive negative.

Exercise 2.15. Solve the following polynomial inequalities. These can be
done with factoring.

• x2 + 4x− 6 ≥ 6
• 2x2 + x− 15 < 0
• −x2 + 2x+ 3 ≥ 0
• x3 − x2 − 16x+ 16 ≤ 0
• x3 − x2 − 16x+ 16 ≥ 36
• x4 − x2 − 20 > 0

Exercise 2.16. Solve the following polynomial inequalities. You may have
to use other tools, such as the rational root theorem or factor theorem, to
proceed here.

• x4 − x3 − 2x− 4 > 0
• x5 − x4 − 3x3 + 5x2 − 2x

2.3. Rational Functions. In many ways, understanding rational functions
comes down to understanding polynomials. Once we understand polynomi-
als and, in particular, identifying where they are positive, negative, or zero,
we know a tremendous amount about rational functions.

The general method of attacking rational functions is to find the zeroes of
the numerator and denominator, set up a sign chart with these zeroes as the
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important places, and to identify where the rational function will be positive
and where it will be negative. Zeroes of the numerator lead to zeroes of the
rational function. Zeroes of the denominator lead to vertical asymptotes
of the rational function. If there is the same zero in the numerator and
denominator, then there might be a hole.

The only bit remaining with respect to rational functions is to understand
their limiting behavior. This falls into a few different categories: there might
be a horizontal asymptote, a slant asymptote, or no asymptote.

Example 2.17. Consider the rational function f(x) =
x2 + 3x+ 5

x3 + x+ 1
, and

suppose we want to find its limiting behavior. If we think of really large x,
then x3 is much larger than x2. In general, if the degree of the denominator
is greater than the degree of the numerator, than the limiting behavior is a
horizontal asymptote at y = 0. That is the case here.

Example 2.18. Consider the rational function g(x) =
x3 + 3x+ 1

4x3 + 1
, and

suppose we want to find its limiting behavior. If we think of really large
x this time, we can’t use the same trick as above. Now the degree of the
numerator and denominator are the same. But for really large x, everything
except the x3 and 4x3 terms matter less and less. In general, if the degrees
of the denominator and numerator are the same, then there is a horizontal
asymptote. For g(x), we expect g(x) ≈ 1

4 for really large x, as the x3 term

of the numerator gets divided by 4x3 in the denominator. This leads to the
general fact that the horizontal asymptote in these cases will be at y = a

b ,
where a is the leading coefficient of the numerator and b is the leading
coefficient of the denominator.

Example 2.19. Consider the rational function h(x) =
x3 + 3x+ 1

x2 + 1
. The

degree of the numerator is exactly one more than the degree of the denom-

inator. Using polynomial long division, we see that h(x) = x +
2x+ 1

x2 + 1
, so

that for large x the polynomial behaves just like x (the
2x+ 1

x2 + 1
→ 0 as x

gets big). We call the line x in this case the slant asymptote, and we find it
in general by performing polynomial long division.

Example 2.20. Consider the rational function j(x) =
x5 + 3x2 + 1

x2 + 1
. Poly-

nomial long division would reveal limiting behavior similar to a cubic, as
the degree of the numerator is 5 and the degree of the denominator is only
2. We don’t care about ’curved’ asymptotes in this course, so all that we
care about here is whether the function goes to ∞ or −∞ as x → ∞ and
x→ −∞.
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Exercise 2.21. Find the zeroes, vertical asymptotes, holes, horizontal asymp-
totes, and slant asymptotes of the following rational functions. Sketch the
results.

(1)
x2 − 5x+ 4

x2 − 4

(2)
2x2 − 5x+ 2

4x2 − 2x− 12

(3)
2x3 − x2 − 2x+ 1

x2 + 3x+ 2

(4)
2x3 + x2 − 8x− 4

x2 − 4x+ 2
(similar to, but not the same as, the previous)

Exercise 2.22. Let’s see a sort of way in which rational functions might
come up. Certain professions, such as any sort of manufacturing or chemi-
cal engineer, need to worry about particular types of problems that we call
”mixing problems.” Suppose, for instance, that a large tank contains 50 liters
of a 75%/25% water/sodium benzoate solution. We want a larger concen-
tration of sodium benzoate, but it’s challenging and expensive to get pure
sodium benzoate. But it’s easy to get a 75%/25% sodium benzoate/water
mixture. So we pour x liters of this new mixture into the tank.

• Show that the new concentration C (starting at 0.25 and changing
because we are adding liquid with a 0.75 concentration) is given by

C =
3x+ 50

4(x+ 50)
• Find the limiting behavior of this system (for positive x only - the

implied domain of this model is for x positive only. Why is that?).
• Does this limiting behavior make sense?

In fact, mixing problems are very important. But to be fair, this would
be one of the easiest mixing problems out there. Chemical engineers, for
example, have to work with different concentrations of different materials
interacting with each other - and different concentrations change the rate of
chemical reaction and interaction as well. There is some intense math there
- but this is where it starts.

Exercise 2.23. In my work, I happen to use rational functions quite a bit.
There are some miraculous properties of rational functions. For better or
worse, we look at two of them here.

(1) Often, math asks meta-type questions: instead of ”what is the solu-
tion?” it might ask ”when is this solveable?” For example, for what
k is the equation

x2 + (1− 3k)x+ (2− k) = 0 (2.1)

solveable for real-valued x? To do this, ’solve’ for k. You’ll get a
rational function. Find the range of that rational function, and this
will be the exact vales of k for which equation (2.1) is solveable.
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(2) This introduces a surprising relationship between rational functions,

matrices, and complex numbers. Given a matrix

(
a b
c d

)
, we can as-

sociate a rational function f(z) =
az + b

cz + d
on the complex numbers.

There are some stunning things here: if the matrix

(
a b
c d

)
is invert-

ible with inverse

(
e f
g h

)
, then the rational function f(z) =

az + b

cz + d

is invertible with inverse f−1(z) =
ez + f

gz + h
. This is not at all obvi-

ous, and is a bit surprising. If you recall the geometry of complex
numbers, and remember that multiplying has to do with a certain
rotation and scaling operation, then one can view the associated
rational functions to matrices as doing a certain rotation, scaling,
shifting, and then doing another roation, scaling, and shifting. The
work I do uses this sort of interplay extensively, and this hints at
two pervasive concepts of higher mathematics: we find connections
between different objects, ultimately learning more about everything
involved; and we let things ’act’ on other things (in this case, ma-
trices are ’acting’ on the complex plane) and through these actions,
we learn more about both what’s being acted upon and the actor.

2.4. Exponentials and Logs.

Exercise 2.24. Review the basic definitions and properties of exponentials
and logarithms. Also review the change-of-base formula.

Example 2.25. Our key interest with exponentials was with modeling cer-
tain types of growth. The easiest to remember is compounding interest.
If an initial payment of P is put into an account that grows as r percent
interest that compounds n times a year, then after t years, there will be
P (1 + r

n)nt in the account. If the interest compounds continuously, there
will be Pert in the account.

Exercise 2.26. Find the amounting of money in the accounts at the given
amount of time shown:

(1) placeholder

Exercise 2.27. Let’s do an experiment. Suppose you are in college debt,
a situation which forces some to get a new loan every 6 months for 4 to
5 years. After some amount of time, you might have to pay back 9 or so
different loans, each with their own interest rates. Think to yourself about
the following: what’s the best way to pay it back? Choose the largest interest
account and pay that one off? Distribute money across several accounts?
Pay off the interest on each, but focus on one or another? This exercise will
be a bit computation heavy, so I recommend that you pull out your calculator,
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some paper, and keep great notes and a table. It is these notes/table that
I’ll want to see

(1) Let us suppose each of the 9 loans is for 4000 dollars, and they have
the following anual interest rates: 3%, 3.5%, 4%, 4.4%, 4.8%, 5%, 5.2%, 5.2%, 5.4%,
compounding continuosly (it will give a good approximation). Let
us also suppose that we have 500 dollars available per month to pay
into these loans, and we invest these at the end of the month, each
month.

(2) First, let’s see what happens if we use a dumb payback scheme: pay
off the smallest interest first, and then progress higher. The smallest
loan debt would grow like 4000e.03t. After one month, the debt on
this account would be 4000e.03(1/12). This is about $4010.01. We
then pay in $500, leaving $3510.01 in the account. The next month,
the debt in the account would grow to (3510.01e/03(1/12) (note that
we used 1/12 again, as this is the amount of time (in years) that
passed from this month to the next. This is about $3519.80. We
again pay in our $500, and we keep on going. We see that on the
9th month, we won’t need all $500. So we use what we need, and
then put the next in the next-smallest account. How big is that
account now? Looking above, we see it had interest rate 3.5%. After
9 months, it will have grown to size 4000e.035(9/12), or about 4091
dollars. Continue in this fashion, paying off the different debts in
this order. How long does it take, and what is the total cost?

(3) Now, let’s use a better scheme. Pay off the largest interest rates
first. How long does it take, and what is the total cost?

(4) Now, I give you an option, Either come up with your own payback
method to try, or do the following computationally intense method -
each month, pay the interest on all accounts, and with the leftovers,
pay off the highest account. This isn’t actually much harder or
longer, once you realize that the interest payment on all but one
loan don’t change from month to month.

(5) Which of these is the best way to pay off one’s debt? Note that in
every case, there’s an interesting property: it’s hard to make progress
at first, as there is something like $100 in interest each month. But
as you pay more off, the interest rates fall, and it gets easier. This
intuition messes with a lot of people’s finances. This also leads to
the wisdom that large initial payments reduce overall pain by a lot.

(6) This is very similar to the financial situation one of my friends found
themselves in, except the numbers were not this clean. He got an
engineering position, but he worked as a waiter for 2 months as
well to supplement his initial payments. Those 2 months ended up
reducing the length of his payment period by about 8 months.
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