Tag Archives: number spiral

Advent of Code: Day 3

This is the third notebook in my posts on the Advent of Code challenges. The notebook in its original format can be found on my github.

Day 3: Spiral Memory

Numbers are arranged in a spiral

17  16  15  14  13
18   5   4   3  12
19   6   1   2  11
20   7   8   9  10
21  22  23---> ...

Given an integer n, what is its Manhattan Distance from the center (1) of the spiral? For instance, the distance of 3 is $2 = 1 + 1$, since it’s one space to the right and one space up from the center.

Here’s my idea. The bottom right corner of the $k$th layer is the integer $(2k+1)^2$, since that’s how many integers are contained within that square. The other three corners in that layer are $(2k+1)^2 – 2k, (2k+1)^2 – 4k$, and $(2k+1)^2 – 6k$. Finally, the closest spot on the $k$th layer to the origin is at distance $k$: these are the four “axis locations” halfway between the corners, at $(2k+1)^2 – k, (2k+1)^2 – 3k, (2k+1)^2 – 5k$, and $(2k+1)^2 – 7k$.

For instance when $k = 1$, the bottom right is $(2 + 1)^2 = 9$, and the four “axis locations” are $9 – 1, 9 – 3, 9-5$, and $9-7$. The “axis locations” are $k$ away, and the corners are $2k$ away.

So I will first find which layer the number is on. Then I’ll figure out which side it’s on, and then how far away it is from the nearest “axis location” or “corner”.

My given number happens to be 289326.

In [1]:
import math

def find_lowest_larger_odd_square(n):
    upper = math.ceil(n**.5)
    if upper %2 == 0:
        upper += 1
    return upper
In [2]:
assert find_lowest_larger_odd_square(39) == 7
assert find_lowest_larger_odd_square(26) == 7
assert find_lowest_larger_odd_square(25) == 5
In [3]:
find_lowest_larger_odd_square(289326)
Out[3]:
539
In [4]:
539**2 - 289326
Out[4]:
1195

It happens to be that our integer is very close to an odd square.
The square is $539^2$, and the distance to that square is $538$ from the center.

Note that $539 = 2(269) + 1$, so this is the $269$th layer of the square.
The previous corner to $539^2$ is $539^2 – 538$, and the previous corner to that is $539^2 – 2\cdot538 = 539^2 – 1076$.
This is the nearest corner.
How far away from the square is this corner?

(more…)

Posted in Expository, Programming, Python | Tagged , , | Leave a comment