Category Archives: Data

Using lcalc to compute half-integral weight L-functions

This is a brief note intended primarily for my collaborators interested in using Rubinstein’s lcalc to compute the values of half-integral weight $L$-functions.

We will be using lcalc through sage. Unfortunately, we are going to be using some functionality which sage doesn’t expose particularly nicely, so it will feel a bit silly. Nonetheless, using sage’s distribution will prevent us from needing to compile it on our own (and there are a few bugfixes present in sage’s version).

Some $L$-functions are inbuilt into lcalc, but not half-integral weight $L$-functions. So it will be necessary to create a datafile containing the data that lcalc will use to generate its approximations. In short, this datafile will describe the shape of the functional equation and give a list of coefficients for lcalc to use.

Building the datafile

It is assumed that the $L$-function is normalized in such a way that
$$\begin{equation}
\Lambda(s) = Q^s L(s) \prod_{j = 1}^{A} \Gamma(\gamma_j s + \lambda_j) = \omega \overline{\Lambda(1 – \overline{s})}.
\end{equation}$$
This involves normalizing the functional equation to be of shape $s \mapsto 1-s$. Also note that $Q$ will be given as a real number.

An annotated version of the datafile you should create looks like this

2                  # 2 means the Dirichlet coefficients are reals
0                  # 0 means the L-function isn't a "nice" one
10000              # 10000 coefficients will be provided
0                  # 0 means the coefficients are not periodic
1                  # num Gamma factors of form \Gamma(\gamma s + \lambda)
1                  # the \gamma in the Gamma factor
1.75 0             # \lambda in Gamma factor; complex valued, space delimited
0.318309886183790  # Q. In this case, 1/pi
1 0                # real and imaginary parts of omega, sign of func. eq.
0                  # number of poles
1.000000000000000  # a(1)
-1.78381067250408  # a(2)
...                # ...
-0.622124724090625 # a(10000)

If there is an error, lcalc will usually fail silently. (Bummer). Note that in practice, datafiles should only contain numbers and should not contain comments. This annotated version is for convenience, not for use.

You can find a copy of the datafile for the unique half-integral weight cusp form of weight $9/2$ on $\Gamma_0(4)$ here. This uses the first 10000 coefficients — it’s surely possible to use more, but this was the test-setup that I first set up.

Generating the coefficients for this example

In order to create datafiles for other cuspforms, it is necessary to compute the coefficients (presumably using magma or sage) and then to populate a datafile. A good exercise would be to recreate this datafile using sage-like methods.

One way to create this datafile is to explicitly create the q-expansion of the modular form, if we happen to know a convenient expression. For us, we happen to know that $f = \eta(2z)^{12} \theta(z)^{-3}$. Thus one way to create the coefficients is to do something like the following.

num_coeffs = 10**5 + 1
weight     = 9.0 / 2.0

R.<q> = PowerSeriesRing(ZZ)
theta_expansion = theta_qexp(num_coeffs)
# Note that qexp_eta omits the q^(1/24) factor
eta_expansion = qexp_eta(ZZ[['q']], num_coeffs + 1)
eta2_coeffs = []
for i in range(num_coeffs):
    if i % 2 == 1:
        eta2_coeffs.append(0)
    else:
        eta2_coeffs.append(eta_expansion[i//2])
eta2 = R(eta2_coeffs)
g = q * ( (eta2)**4 / (theta_expansion) )**3

coefficients = g.list()[1:] # skip the 0 coeff
print(coefficients[:10])

normalized_coefficients = []
for idx, elem in enumerate(coefficients, 1):
    normalized_coeff = 1.0 * elem / (idx ** (.5 * (weight - 1)))
    normalized_coefficients.append(normalized_coeff)
print(normalized_coefficients[:10])

Using lcalc now

Suppose that you have a datafile, called g1_lcalcfile.txt (for example). Then to use this from sage, you point lcalc within sage to this file. This can be done through calls such as

# Computes L(0.5 + 0i, f)
lcalc('-v -x0.5 -y0 -Fg1_lcalcfile.txt')

# Computes L(s, f) from 0.5 to (2 + 7i) at 1000 equally spaced samples
lcalc('--value-line-segment -x0.5 -y0 -X2 -Y7 --number-samples=1000 -Fg1_lcalcfile.txt')

# See lcalc.help() for more on calling lcalc.

The key in these is to pass along the datafile through the -F argument.

Posted in Data, Mathematics, Programming, sage, sagemath, sagemath | Tagged | Leave a comment

How fat would we have to get to balance carbon emissions?

Let’s consider a ridiculous solution to a real problem. We’re unearthing tons of carbon, burning it, and releasing it into the atmosphere.

Disclaimer: There are several greenhouse gasses, and lots of other things that we’re throwing wantonly into the environment. Considering them makes things incredibly complicated incredibly quickly, so I blithely ignore them in this note.

Such rapid changes have side effects, many of which lead to bad things. That’s why nearly 150 countries ratified the Paris Agreement on Climate Change.1 Even if we assume that all these countries will accomplish what they agreed to (which might be challenging for the US),2

most nations and advocacy groups are focusing on increasing efficiency and reducing emissions. These are good goals! But what about all the carbon that is already in the atmosphere?3

You know what else is a problem? Obesity! How are we to solve all of these problems?

Looking at this (very unscientific) graph,4 we see that the red isn’t keeping up! Maybe we aren’t using the valuable resource of our own bodies enough! Fat has carbon in it — often over 20% by weight. What if we took advantage of our propensity to become propense? How fat would we need to get to balance last year’s carbon emissions?

That’s what we investigate here.

(more…)

Posted in Data, Mathematics, Story | Tagged , , , | 1 Comment