Author Archives: mixedmath

“Second Moments in the Generalized Gauss Circle Problem” (with T. Hulse, C. Ieong Kuan, and A. Walker)

This is joint work with Thomas Hulse, Chan Ieong Kuan, and Alexander Walker. This is a natural successor to our previous work (see their announcements: one, two, three) concerning bounds and asymptotics for sums of coefficients of modular forms.

We now have a variety of results concerning the behavior of the partial sums

$$ S_f(X) = \sum_{n \leq X} a(n) $$

where $f(z) = \sum_{n \geq 1} a(n) e(nz)$ is a GL(2) cuspform. The primary focus of our previous work was to understand the Dirichlet series

$$ D(s, S_f \times S_f) = \sum_{n \geq 1} \frac{S_f(n)^2}{n^s} $$

completely, give its meromorphic continuation to the plane (this was the major topic of the first paper in the series), and to perform classical complex analysis on this object in order to describe the behavior of $S_f(n)$ and $S_f(n)^2$ (this was done in the first paper, and was the major topic of the second paper of the series). One motivation for studying this type of problem is that bounds for $S_f(n)$ are analogous to understanding the error term in lattice point discrepancy with circles.

That is, let $S_2(R)$ denote the number of lattice points in a circle of radius $\sqrt{R}$ centered at the origin. Then we expect that $S_2(R)$ is approximately the area of the circle, plus or minus some error term. We write this as

$$ S_2(R) = \pi R + P_2(R),$$

where $P_2(R)$ is the error term. We refer to $P_2(R)$ as the “lattice point discrepancy” — it describes the discrepancy between the number of lattice points in the circle and the area of the circle. Determining the size of $P_2(R)$ is a very famous problem called the Gauss circle problem, and it has been studied for over 200 years. We believe that $P_2(R) = O(R^{1/4 + \epsilon})$, but that is not known to be true.

The Gauss circle problem can be cast in the language of modular forms. Let $\theta(z)$ denote the standard Jacobi theta series,

$$ \theta(z) = \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 z}.$$


$$ \theta^2(z) = 1 + \sum_{n \geq 1} r_2(n) e^{2\pi i n z},$$

where $r_2(n)$ denotes the number of representations of $n$ as a sum of $2$ (positive or negative) squares. The function $\theta^2(z)$ is a modular form of weight $1$ on $\Gamma_0(4)$, but it is not a cuspform. However, the sum

$$ \sum_{n \leq R} r_2(n) = S_2(R),$$

and so the partial sums of the coefficients of $\theta^2(z)$ indicate the number of lattice points in the circle of radius $\sqrt R$. Thus $\theta^2(z)$ gives access to the Gauss circle problem.

More generally, one can consider the number of lattice points in a $k$-dimensional sphere of radius $\sqrt R$ centered at the origin, which should approximately be the volume of that sphere,

$$ S_k(R) = \mathrm{Vol}(B(\sqrt R)) + P_k(R) = \sum_{n \leq R} r_k(n),$$

giving a $k$-dimensional lattice point discrepancy. For large dimension $k$, one should expect that the circle problem is sufficient to give good bounds and understanding of the size and error of $S_k(R)$. For $k \geq 5$, the true order of growth for $P_k(R)$ is known (up to constants).

Therefore it happens to be that the small (meaning 2 or 3) dimensional cases are both the most interesting, given our predilection for 2 and 3 dimensional geometry, and the most enigmatic. For a variety of reasons, the three dimensional case is very challenging to understand, and is perhaps even more enigmatic than the two dimensional case.

Strong evidence for the conjectured size of the lattice point discrepancy  comes in the form of mean square estimates. By looking at the square, one doesn’t need to worry about oscillation from positive to negative values. And by averaging over many radii, one hopes to smooth out some of the individual bumps. These mean square estimates take the form

\int_0^X P_2(t)^2 dt &= C X^{3/2} + O(X \log^2 X) \\
\int_0^X P_3(t)^2 dt &= C’ X^2 \log X + O(X^2 (\sqrt{ \log X})).

These indicate that the average size of $P_2(R)$ is $R^{1/4}$. and that the average size of $P_3(R)$ is $R^{1/2}$. In the two dimensional case, notice that the error term in the mean square asymptotic has pretty significant separation. It has essentially a $\sqrt X$ power-savings over the main term. But in the three dimensional case, there is no power separation. Even with significant averaging, we are only just capable of distinguishing a main term at all.

It is also interesting, but for more complicated reasons, that the main term in the three dimensional case has a log term within it. This is unique to the three dimensional case. But that is a description for another time.

In a paper that we recently posted to the arxiv, we show that the Dirichlet series

$$ \sum_{n \geq 1} \frac{S_k(n)^2}{n^s} $$


$$ \sum_{n \geq 1} \frac{P_k(n)^2}{n^s} $$

for $k \geq 3$ have understandable meromorphic continuation to the plane. Of particular interest is the $k = 3$ case, of course. We then investigate smoothed and unsmoothed mean square results.  In particular, we prove a result stated  following.


$$\begin{align} \int_0^\infty P_k(t)^2 e^{-t/X} &= C_3 X^2 \log X + C_4 X^{5/2}  \\ &\quad + C_kX^{k-1}  + O(X^{k-2} \end{align}$$

In this statement, the term with $C_3$ only appears in dimension $3$, and the term with $C_4$ only appears in dimension $4$. This should really thought of as saying that we understand the Laplace transform of the square of the lattice point discrepancy as well as can be desired.

We are also able to improve the sharp second mean in the dimension 3 case, showing in particular the following.


There exists $\lambda > 0$ such that

$$\int_0^X P_3(t)^2 dt = C X^2 \log X + D X^2 + O(X^{2 – \lambda}).$$

We do not actually compute what we might take $\lambda$ to be, but we believe (informally) that $\lambda$ can be taken as $1/5$.

The major themes behind these new results are already present in the first paper in the series. The new ingredient involves handling the behavior on non-cuspforms at the cusps on the analytic side, and handling the apparent main terms (int his case, the volume of the ball) on the combinatorial side.

There is an additional difficulty that arises in the dimension 2 case which makes it distinct. But soon I will describe a different forthcoming work in that case.

Posted in Math.NT, Mathematics | Tagged , , | Leave a comment

How fat would we have to get to balance carbon emissions?

Let’s consider a ridiculous solution to a real problem. We’re unearthing tons of carbon, burning it, and releasing it into the atmosphere.

Disclaimer: There are several greenhouse gasses, and lots of other things that we’re throwing wantonly into the environment. Considering them makes things incredibly complicated incredibly quickly, so I blithely ignore them in this note.

Such rapid changes have side effects, many of which lead to bad things. That’s why nearly 150 countries ratified the Paris Agreement on Climate Change.1 Even if we assume that all these countries will accomplish what they agreed to (which might be challenging for the US),2

most nations and advocacy groups are focusing on increasing efficiency and reducing emissions. These are good goals! But what about all the carbon that is already in the atmosphere?3

You know what else is a problem? Obesity! How are we to solve all of these problems?

Looking at this (very unscientific) graph,4 we see that the red isn’t keeping up! Maybe we aren’t using the valuable resource of our own bodies enough! Fat has carbon in it — often over 20% by weight. What if we took advantage of our propensity to become propense? How fat would we need to get to balance last year’s carbon emissions?

That’s what we investigate here.


Posted in Data, Mathematics, Story | Tagged , , , | 1 Comment

Slides from a Dissertation Defense

I just defended my dissertation. Thank you to Jeff, Jill, and Dinakar for being on my Defense Committee. In this talk, I discuss some of the ideas and follow-ups on my thesis. I’ll also take this moment to include the dedication in my thesis.

ThesisDedicationHere are the slides from my defense.

After the defense, I gave Jeff and Jill a poster of our family tree. I made this using data from Math Genealogy, which has so much data.


Posted in Mathematics | Tagged , , , | 2 Comments

Experimenting with latex2html5: PSTricks to HTML interactivity

I recently learned about about latex2html5, a javascript library which allows one to write LaTeX and PSTricks to produce interactive objects on websites.At its core, it functions in a similar way to MathJax, which is what I use to generate mathematics on this (and my other) sites. As an example of MathJax, I can write the following.

$$ \int_0^1 f(x) dx = F(1) – F(0). $$

The dream of latex2html5 is to be able to describe a diagram using the language of PSTricks inside LaTeX, throw in a bit of sugar to describe how interactivity should work on the web, and then render this to a beautiful svg using javascript.

Unfortunately, I did not try to make this work on WordPress (as WordPress is a bit finicky about how it interacts with javascript). So instead, I wrote a more detailed description about latex2html5, including some examples and some criticisms, on my non-Wordpress website


Posted in Programming | Leave a comment

Slides from a Talk at the Dartmouth Number Theory Seminar

I recently gave a talk at the Dartmouth Number Theory Seminar (thank you Edgar for inviting me and to Edgar, Naomi, and John for being such good hosts). In this talk, I described the recent successes we’ve had on working with variants of the Gauss Circle Problem.

The story began when (with Tom Hulse, Chan Ieong Kuan, and Alex Walker — and with helpful input from Mehmet Kiral, Jeff Hoffstein, and others) we introduced and studied the Dirichlet series
\sum_{n \geq 1} \frac{S(n)^2}{n^s}, \notag
where $S(n)$ is a sum of the first $n$ Fourier coefficients of an automorphic form on GL(2)$. We’ve done this successfully with a variety of automorphic forms, leading to new results for averages, short-interval averages, sign changes, and mean-square estimates of the error for several classical problems. Many of these papers and results have been discussed in other places on this site.

Ultimately, the problem becomes acquiring sufficiently detailed understandings of the spectral behavior of various forms (or more correctly, the behavior of the spectral expansion of a Poincare series against various forms).
We are continuing to research and study a variety of problems through this general approach.

The slides for this talk are available here.

Posted in Uncategorized | Leave a comment

Smooth Sums to Sharp Sums 1

In this note, I describe a combination of two smoothed integral transforms that has been very useful in my collaborations with Alex Walker, Chan Ieong Kuan, and Tom Hulse. I suspect that this particular technique was once very well-known. But we were not familiar with it, and so I describe it here.

In application, this is somewhat more complicated. But to show the technique, I apply it to reprove some classic bounds on $\text{GL}(2)$ $L$-functions.

This note is also available as a pdf. This was first written as a LaTeX document, and then modified to fit into wordpress through latex2jax.


Consider a Dirichlet series
D(s) = \sum_{n \geq 1} \frac{a(n)}{n^s}. \notag
Suppose that this Dirichlet series converges absolutely for $\Re s > 1$, has meromorphic continuation to the complex plane, and satisfies a functional equation of shape
\Lambda(s) := G(s) D(s) = \epsilon \Lambda(1-s), \notag
where $\lvert \epsilon \rvert = 1$ and $G(s)$ is a product of Gamma factors.

Dirichlet series are often used as a tool to study number theoretic functions with multiplicative properties. By studying the analytic properties of the Dirichlet series, one hopes to extract information about the coefficients $a(n)$. Some of the most common interesting information within Dirichlet series comes from partial sums
S(n) = \sum_{m \leq n} a(m). \notag
For example, the Gauss Circle and Dirichlet Divisor problems can both be stated as problems concerning sums of coefficients of Dirichlet series.

One can try to understand the partial sum directly by understanding the integral transform
S(n) = \frac{1}{2\pi i} \int_{(2)} D(s) \frac{X^s}{s} ds, \notag
a Perron integral. However, it is often challenging to understand this integral, as delicate properties concerning the convergence of the integral often come into play.

Instead, one often tries to understand a smoothed sum of the form
\sum_{m \geq 1} a(m) v(m) \notag
where $v(m)$ is a smooth function that vanishes or decays extremely quickly for values of $m$ larger than $n$. A large class of smoothed sums can be obtained by starting with a very nicely behaved weight function $v(m)$ and take its Mellin transform
V(s) = \int_0^\infty v(x) x^s \frac{dx}{x}. \notag
Then Mellin inversion gives that
\sum_{m \geq 1} a(m) v(m/X) = \frac{1}{2\pi i} \int_{(2)} D(s) X^s V(s) ds, \notag
as long as $v$ and $V$ are nice enough functions.

In this note, we will use two smoothing integral transforms and corresponding smoothed sums. We will use one smooth function $v_1$ (which depends on another parameter $Y$) with the property that
\sum_{m \geq 1} a(m) v_1(m/X) \approx \sum_{\lvert m – X \rvert < X/Y} a(m). \notag
And we will use another smooth function $v_2$ (which also depends on $Y$) with the property that
\sum_{m \geq 1} a(m) v_2(m/X) = \sum_{m \leq X} a(m) + \sum_{X < m < X + X/Y} a(m) v_2(m/X). \notag
Further, as long as the coefficients $a(m)$ are nonnegative, it will be true that
\sum_{X < m < X + X/Y} a(m) v_2(m/X) \ll \sum_{\lvert m – X \rvert < X/Y} a(m), \notag
which is exactly what $\sum a(m) v_1(m/X)$ estimates. Therefore
\sum_{m \leq X} a(m) = \sum_{m \geq 1} a(m) v_2(m/X) + O\Big(\sum_{m \geq 1} a(m) v_1(m/X) \Big).

Hence sufficient understanding of $\sum a(m) v_1(m/X)$ and $\sum a(m) v_2(m/X)$ allows one to understand the sharp sum
\sum_{m \leq X} a(m). \notag


Posted in Expository, Math.NT, Mathematics | Tagged , , , , | 3 Comments

About 2017

While idly thinking while heading back from the office, and then more later while thinking after dinner with my academic little brother Alex Walker and my future academic little sister-in-law Sara Schulz, we began to think about $2017$, the number.

General Patterns

  • 2017 is a prime number. 2017 is the 306th prime. The 2017th prime is 17539.
  • As 2011 is also prime, we call 2017 a sexy prime.
  • 2017 can be written as a sum of two squares,
    $$ 2017 = 9^2 +44^2,$$
    and this is the only way to write it as a sum of two squares.
  • Similarly, 2017 appears as the hypotenuse of a primitive Pythagorean triangle,
    $$ 2017^2 = 792^2 + 1855^2,$$
    and this is the only such right triangle.
  • 2017 is uniquely identified as the first odd prime that leaves a remainder of $2$ when divided by $5$, $13$, and $31$. That is,
    $$ 2017 \equiv 2 \pmod {5, 13, 31}.$$
  • In different bases,
    $$ \begin{align} (2017)_{10} &= (2681)_9 = (3741)_8 = (5611)_7 = (13201)_6 \notag \\ &= (31032)_5 = (133201)_4 = (2202201)_3 = (11111100001)_2 \notag \end{align}$$
    The base $2$ and base $3$ expressions are sort of nice, including repetition.


Posted in Mathematics | Tagged , | 1 Comment

Revealing zero in fully homomorphic encryption is a Bad Thing

When I was first learning number theory, cryptography seemed really fun and really practical. I thought elementary number theory was elegant, and that cryptography was an elegant application. As I continued to learn more about mathematics, and in particular modern mathematics, I began to realize that decades of instruction and improvement (and perhaps of more useful points of view) have simplified the presentation of elementary number theory, and that modern mathematics is less elegant in presentation.

Similarly, as I learned more about cryptography, I learned that though the basic ideas are very simple, their application is often very inelegant. For example, the basis of RSA follows immediately from Euler’s Theorem as learned while studying elementary number theory, or alternately from Lagrange’s Theorem as learned while studying group theory or abstract algebra. And further, these are very early topics in these two areas of study!

But a naive implementation of RSA is doomed (For that matter, many professional implementations have their flaws too). Every now and then, a very clever expert comes up with a new attack on popular cryptosystems, generating new guidelines and recommendations. Some guidelines make intuitive sense [e.g. don’t use too small of an exponent for either the public or secret keys in RSA], but many are more complicated or designed to prevent more sophisticated attacks [especially side-channel attacks].

In the summer of 2013, I participated in the ICERM IdeaLab working towards more efficient homomorphic encryption. We were playing with existing homomorphic encryption schemes and trying to come up with new methods. One guideline that we followed is that an attacker should not be able to recognize an encryption of zero. This seems like a reasonable guideline, but I didn’t really understand why, until I was chatting with others at the 2017 Joint Mathematics Meetings in Atlanta.

It turns out that revealing zero isn’t just against generally sound advice. Revealing zero is a capital B capital T Bad Thing.

Basic Setup

For the rest of this note, I’ll try to identify some of this reasoning.

In a typical cryptosystem, the basic setup is as follows. Andrew has a message that he wants to send to Beatrice. So Andrew converts the message into a list of numbers $M$, and uses some sort of encryption function $E(\cdot)$ to encrypt $M$, forming a ciphertext $C$. We can represent this as $C = E(M)$. Andrew transmits $C$ to Beatrice. If an eavesdropper Eve happens to intercept $C$, it should be very hard for Eve to recover any information about the original message from $C$. But when Beatrice receives $C$, she uses a corresponding decryption function $D(\cdot)$ to decrypt $C$, $M = d(C)$.

Often, the encryption and decryption techniques are based on number theoretic or combinatorial primitives. Some of these have extra structure (or at least they do with basic implementation). For instance, the RSA cryptosystem involves a public exponent $e$, a public mod $N$, and a private exponent $d$. Andrew encrypts the message $M$ by computing $C = E(M) \equiv M^e \bmod N$. Beatrice decrypts the message by computing $M = C^d \equiv M^{ed} \bmod N$.

Notice that in the RSA system, given two messages $M_1, M_2$ and corresponding ciphertexts $C_1, C_2$, we have that
E(M_1 M_2) \equiv (M_1 M_2)^e \equiv M_1^e M_2^e \equiv E(M_1) E(M_2) \pmod N. \notag
The encryption function $E(\cdot)$ is a group homomorphism. This is an example of extra structure.

A fully homomorphic cryptosystem has an encryption function $E(\cdot)$ satisfying both $E(M_1 + M_2) = E(M_1) + E(M_2)$ and $E(M_1M_2) = E(M_1)E(M_2)$ (or more generally an analogous pair of operations). That is, $E(\cdot)$ is a ring homomorphism.

This extra structure allows for (a lot of) extra utility. A fully homomorphic $E(\cdot)$ would allow one to perform meaningful operations on encrypted data, even though you can’t read the data itself. For example, a clinic could store (encrypted) medical information on an external server. A doctor or nurse could pull out a cellphone or tablet with relatively little computing power or memory and securely query the medical data. Fully homomorphic encryption would allow one to securely outsource data infrastructure.

A different usage model suggests that we use a different mental model. So suppose Alice has sensitive data that she wants to store for use on EveCorp’s servers. Alice knows an encryption method $E(\cdot)$ and a decryption method $D(\cdot)$, while EveCorp only ever has mountains of ciphertexts, and cannot read the data [even though they have it].

Why revealing zero is a Bad Thing

Let us now consider some basic cryptographic attacks. We should assume that EveCorp has access to a long list of plaintext messages $M_i$ and their corresponding ciphertexts $C_i$. Not everything, but perhaps from small leaks or other avenues. Among the messages $M_i$ it is very likely that there are two messages $M_1, M_2$ which are relatively prime. Then an application of the Euclidean Algorithm gives a linear combination of $M_1$ and $M_2$ such that
M_1 x + M_2 y = 1 \notag
for some integers $x,y$. Even though EveCorp doesn’t know the encryption method $E(\cdot)$, since we are assuming that they have access to the corresponding ciphertexts $C_1$ and $C_2$, EveCorp has access to an encryption of $1$ using the ring homomorphism properties:
E(1) = E(M_1 x + M_2 y) = x E(M_1) + y E(M_2) = x C_1 + y C_2.
By multiplying $E(1)$ by $m$, EveCorp has access to a plaintext and encryption of $m$ for any message $m$.

Now suppose that EveCorp can always recognize an encryption of $0$. Then EveCorp can mount a variety of attacks exposing information about the data it holds.

For example, EveCorp can test whether a particular message $m$ is contained in the encrypted dataset. First, EveCorp generates a ciphertext $C_m$ for $m$ by multiplying $E(1)$ by $m$, as in \eqref{eq:encryption_of_one}. Then for each ciphertext $C$ in the dataset, EveCorp computes $C – C_m$. If $m$ is contained in the dataset, then $C – C_m$ will be an encryption of $0$ for the $C$ corresponding to $m$. EveCorp recognizes this, and now knows that $m$ is in the data. To be more specific, perhaps a list of encrypted names of medical patients appears in the data, and EveCorp wants to see if JohnDoe is in that list. If they can recognize encryptions of $0$, then EveCorp can access this information.

And thus it is unacceptable for external entities to be able to consistently recognize encryptions of $0$.

Up to now, I’ve been a bit loose by saying “an encryption of zero” or “an encryption of $m$”. The reason for this is that to protect against recognition of encryptions of $0$, some entropy is added to the encryption function $E(\cdot)$, making it multivalued. So if we have a message $M$ and we encrypt it once to get $E(M)$, and we encrypt $M$ later and get $E'(M)$, it is often not true that $E(M) = E'(M)$, even though they are both encryptions of the same message. But these systems are designed so that it is true that $C(E(M)) = C(E'(M)) = M$, so that the entropy doesn’t matter.

This is a separate matter, and something that I will probably return to later.

Posted in Crypto, Math.NT, Mathematics, Programming | Tagged , | Leave a comment

My Teaching

I am currently not teaching anything. Instead I am visiting MSRI in Berkeley, California.

In fall 2016, I taught Math 100 (second semester calculus, starting with integration by parts and going through sequences and series) at Brown University. Here are my concluding remarks.

In spring 2016, I designed and taught Math 42 (elementary number theory) at Brown University. My students were exceptional — check out a showcase of some of their final projects. Here are my concluding remarks.

In fall 2014, I taught Math 170 (advanced placement second semester calculus) at Brown University.

I taught number theory in the Summer@Brown program for high school students in the summers of 2013-2015.

I taught a privately requested course in precalculus in the summer of 2013.

I have served as a TA (many, many, many times) for

  • Math 90 (first semester calculus) at Brown University
  • Math 100 (second semester calculus) at Brown University
  • Math 1501 (first semester calculus) at Georgia Tech
  • Math 1502 (second semester calculus, starting with sequences and series but also with 7 weeks of linear algebra) at Georgia Tech
  • Math 2401 (multivariable calculus) at Georgia Tech (there’s essentially no content on this site about this – this was just before I began to maintain a website)

I sometimes tutor at Brown (but not limited to Brown students) and around Boston, on a wide variety of topics (not just the ordinary, boring ones). I charge $80/hour, but I am not currently looking for tutees.

Below, you can find my most recent posts tagged under “Teaching”.

Posted in Brown University, Math 100, Teaching | Leave a comment

Programming Masthead

I maintain the following programming projects:

HNRSS: (source), a HackerNews RSS generator written in python. HNRSS periodically updates RSS feeds from the HN frontpage and best list. It also attempts to automatically summarize the link (if there is a link) and includes the top five comments, all to make it easier to determine whether it’s worth checking out.

LaTeX2Jax: (source), a tool to convert LaTeX documents to HTML with MathJax. This is a modification of the earlier MSE2WP, which converts Math.StackExchange flavored markdown to WordPress+MathJax compatible html. In particular, this is more general, and allows better control of the resulting html by exposing more CSS elements (that generically aren’t available on free WordPress setups). This is what is used for all math posts on this site.

MSE2WP: (source), a tool to convert Math.Stackexchange flavored markdown to WordPress+MathJax compatible html. This was once written for the Math.Stackexchange Community Blog. But as that blog is shutting down, there is much less of a purpose for this script. Note that this began as a modified version of latex2wp.


I actively contribute to:

python-markdown2: (source),  a fast and complete python implementation of markdown, with a few additional features.


And I generally support or have contributed to:

SageMath: (main site), a free and open source system of tools for mathematics. Some think of it as a free alternative to the “Big M’s” — Maple, Mathematica, Magma.

Matplotlib: (main site), a plotting library in python. Most of the static plots on this site were creating using matplotlib.

crouton: (source), a tool for making Chromebooks, which by default are very limited in capability, into hackable linux laptops. This lets you directly run Linux on the device at the same time as having ChromeOS installed. The only cost is that there is absolutely no physical security at all (and every once in a while a ChromeOS update comes around and breaks lots of things). It’s great!


Below, you can find my most recent posts tagged “Programming” on this site.

I will note the following posts which have received lots of positive feedback.

  1. A Notebook Preparing for a Talk at Quebec-Maine
  2. A Brief Notebook on Cryptography
  3. Computing pi with Tools from Calculus (which includes computational tidbits, though no actual programming).
Posted in Programming | Leave a comment