Monthly Archives: February 2018

Segregation, Gerrymandering, and Schelling’s Model

[This note is more about modeling some of the mathematics behind political events than politics themselves. And there are pretty pictures.]

Gerrymandering has become a recurring topic in the news. The Supreme Court of the US, as well as more state courts and supreme courts, is hearing multiple cases on partisan gerrymandering (all beginning with a case in Wisconsin).

Intuitively, it is clear that gerrymandering is bad. It allows politicians to choose their voters, instead of the other way around. And it allows the majority party to quash minority voices.

But how can one identify a gerrymandered map? To quote Justice Kennedy in his Concurrence the 2004 Supreme Court case Vieth v. Jubelirer:

When presented with a claim of injury from partisan gerrymandering, courts confront two obstacles. First is the lack of comprehensive and neutral principles for drawing electoral boundaries. No substantive definition of fairness in districting seems to command general assent. Second is the absence of rules to limit and confine judicial intervention. With uncertain limits, intervening courts–even when proceeding with best intentions–would risk assuming political, not legal, responsibility for a process that often produces ill will and distrust.

Later, he adds to the first obstacle, saying:

The object of districting is to establish “fair and effective representation for all citizens.” Reynolds v. Sims, 377 U.S. 533, 565—568 (1964). At first it might seem that courts could determine, by the exercise of their own judgment, whether political classifications are related to this object or instead burden representational rights. The lack, however, of any agreed upon model of fair and effective representation makes this analysis difficult to pursue.

From Justice Kennedy’s Concurrence emerges a theme — a “workable standard” of identifying gerrymandering would open up the possibility of limiting partisan gerrymandering through the courts. Indeed, at the core of the Wisconsin gerrymandering case is a proposed “workable standard”, based around the efficiency gap.

 

Thomas Schelling and Segregation

In 1971, American economist Thomas Schelling (who later won the Nobel Prize in Economics in 2005) published Dynamic Models of Segregation (Journal of Mathematical Sociology, 1971, Vol 1, pp 143–186). He sought to understand why racial segregation in the United States seems so difficult to combat.

He introduced a simple model of segregation suggesting that even if each individual person doesn’t mind living with others of a different race, they might still choose to segregate themselves through mild preferences. As each individual makes these choices, overall segregation increases.

I write this post because I wondered what happens if we adapt Schelling’s model to instead model a state and its district voting map. In place of racial segregation, I consider political segregation. Supposing the district voting map does not change, I wondered how the efficiency gap will change over time as people further segregate themselves.

It seemed intuitive to me that political segregation (where people who had the same political beliefs stayed largely together and separated from those with different political beliefs) might correspond to more egregious cases of gerrymandering. But to my surprise, I was (mostly) wrong.

Let’s set up and see the model.

(more…)

Posted in Expository, Mathematics, Politics, Programming, Python | Tagged , , | Leave a comment